Reviews of Geophysics’

INVITED ARTICLE
10.1029/2022RG000801

Key Points:

e Land data assimilation (LDA)
advances scientific understanding and
serves as an engineering tool for Earth
system sciences

o DA reflects the trend of harmonizing
theory and data in the era of big data
and artificial intelligence

e Future LDA research should expand
the applications from pure geophysical
systems to coupled natural and human
systems

Correspondence to:

X. Li,
xinli@itpcas.ac.cn

Citation:

Li, X., Liu, F., Ma, C., Hou, J., Zheng, D.,
Ma, H., et al. (2024). Land data
assimilation: Harmonizing theory and data
in land surface process studies. Reviews of
Geophysics, 62, €2022RG000801. https://
doi.org/10.1029/2022RG000801

Received 6 FEB 2023
Accepted 14 FEB 2024
Corrected 1 APR 2024

This article was corrected on 1 APR 2024,
See the end of the full text for details.

Author Contributions:

Conceptualization: Xin Li, Feng Liu,
Chunfeng Ma, Jinliang Hou,

Donghai Zheng

Investigation: Feng Liu, Chunfeng Ma,
Jinliang Hou, Donghai Zheng,

Hanqing Ma

Project administration: Xin Li
Visualization: Feng Liu, Chunfeng Ma,
Jinliang Hou, Donghai Zheng,

Hanqging Ma

Writing - original draft: Xin Li,

Feng Liu, Chunfeng Ma, Jinliang Hou,
Donghai Zheng, Hanqing Ma, Yulong Bai
Writing — review & editing: Xin Li,
Feng Liu, Chunfeng Ma, Jinliang Hou,
Donghai Zheng, Hanqing Ma, Yulong Bai,
Xujun Han, Harry Vereecken, Kun Yang,
Qingyun Duan, Chunlin Huang

© 2024. The Authors.

This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications or
adaptations are made.

'.) Check for updates

Y ad B Eianis
AT o sciencs

ik

Land Data Assimilation: Harmonizing Theory and Data in
Land Surface Process Studies

Xin Li' ©, Feng Liu*> ¢, Chunfeng Ma” (), Jinliang Hou”
Yulong Bai® ©©, Xujun Han* ©, Harry Vereecken®
Chunlin Huang?

, Donghai Zheng' ©©, Hanqing Ma> ©,
, Kun Yang6 , Qingyun Duan’ ©, and

'National Tibetan Plateau Data Center, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources,
Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China, ’Key Laboratory of Remote Sensing of
Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Lanzhou, China, *College of Physics and Electrical Engineering, Northwest
Normal University, Lanzhou, China, *Chongging Jinfo Mountain Karst Ecosystem National Observation and Research
Station, School of Geographical Sciences, Southwest University, Chongging, China, *Forschungszentrum Jiilich,
Agrosphere (IBG 3), Jiilich, Germany, ®Ministry of Education Key Laboratory for Earth System Modeling, Department of
Earth System Science, Tsinghua University, Beijing, China, 'College of Hydrology and Water Resources, Hohai
University, Nanjing, China

Abstract Data assimilation plays a dual role in advancing the “scientific” understanding and serving as an
“engineering tool” for the Earth system sciences. Land data assimilation (LDA) has evolved into a distinct
discipline within geophysics, facilitating the harmonization of theory and data and allowing land models and
observations to complement and constrain each other. Over recent decades, substantial progress has been made
in the theory, methodology, and application of LDA, necessitating a holistic and in-depth exploration of its full
spectrum. Here, we present a thorough review elucidating the theoretical and methodological developments in
LDA and its distinctive features. This encompasses breakthroughs in addressing strong nonlinearities in land
surface processes, exploring the potential of machine learning approaches in data assimilation, quantifying
uncertainties arising from multiscale spatial correlation, and simultaneously estimating model states and
parameters. LDA has proven successful in enhancing the understanding and prediction of various land surface
processes (including soil moisture, snow, evapotranspiration, streamflow, groundwater, irrigation and land
surface temperature), particularly within the realms of water and energy cycles. This review outlines the
development of global, regional, and catchment-scale LDA systems and software platforms, proposing grand
challenges of generating land reanalysis and advancing coupled land—atmosphere DA. We lastly highlight the
opportunities to expand the applications of LDA from pure geophysical systems to coupled natural and human
systems by ingesting a deluge of Earth observation and social sensing data. The paper synthesizes current LDA
knowledge and provides a steppingstone for its future development, particularly in promoting dual driven
theory-data land processes studies.

Plain Language Summary Land Data Assimilation (LDA) integrates numerical models with
observation data to enhance predictions of key variables related to land surface processes, including soil
moisture, snow, evapotranspiration, and groundwater. Consequently, LDA effectively tackles two of the
fundamental scientific challenges in the Earth system: how to enhance the usability of exponentially increasing
land observations and how to improve the predictive capability and accuracy of land models. Significant
advancements have been made in the theory, methods, and applications of LDA since the 21st century.
Breakthroughs have been attained in characterizing uncertainties, estimating multiple variables and parameters
simultaneously, and incorporating big data analytics. LDA systems at global, regional, and catchment-scales,
along with widely used software platforms, have been developed. However, future challenges facing LDA
comprise improving meteorological forcing data, creating long-term land reanalysis, devising operational
applications, and broadening its range to cover the critical zone. In the era of big data, LDA will evolve further
by assimilating big Earth data and incorporating machine learning to develop digital twins from pure
geophysical systems to coupled natural and human systems.
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1. Data Assimilation and Land Surface Research
1.1. Challenges in the Predictability and Observability of Land Surface Processes

Modeling and observation are two major methods for investigating the spatiotemporal evolution of the Earth
system. A numerical model, as the formulation of theory, provides a dynamic framework for the continuous
simulation of Earth system spatiotemporally, while observational data capture key elements of the Earth system
with respect to the specific range of time and locations at multiple scales. Data assimilation (DA), also known as
geophysical model data assimilation or model-data fusion in geophysics, aims to optimally combine dynamic
modeling (i.e., theory) with observations (i.e., data) to improve the estimation of the whole Earth system and has
become an important discipline in geoscience (Carrassi et al., 2018). DA was first introduced in atmospheric
science (Daley, 1997; Derber & Rosati, 1989). The successful application has led to the gradual application of DA
to other disciplinary fields of Earth system sciences (X. Li et al., 2020). DA is considered “a strategy for the Earth
system sciences” (NRC, 1991) and has also been used to address two major scientific questions in the Earth
system, that is, predictability and observability of land surface processes.

Land models describe biogeophysical/geochemical processes in the Earth system using physically based gov-
erning equations combined with parameterizations of local-scale processes, which determine the state and ex-
change of energy, water, and carbon at local, regional, or global scales (Golaz et al., 2019; Lawrence et al., 2019;
Wiltshire et al., 2021). Although land models have evolved from simple bucket models (Manabe, 1969) to more
sophisticated biogeophysical/geochemical models (Dai et al., 2003; Lawrence et al., 2019; Sellers et al., 1986),
challenges remain in continually improving their predictability and accuracy, especially given the drastic het-
erogeneity of land surface processes and the associated scaling challenges (Li et al., 2022). For instance, many
governing equations of physical processes (e.g., soil water flow) adopted in current land models have been
developed based on microscale observations (e.g., soil column scale), and uncertainties may arise when applying
these equations at the macroscale (e.g., watershed scale), mainly due to the strong spatiotemporal heterogeneities
of model parameters (e.g., soil hydraulic properties), initial conditions (i.e., model states such as soil moisture),
and boundary conditions (i.e., near-surface atmospheric states such as precipitation). In addition, some land
surface processes remain unknown or are difficult to parameterize, which also affects the predictability and
accuracy of land models. For example, typical processes of the cryosphere (e.g., glaciers and permafrost) and fully
closed water cycles consisting of soil-aquifer interactions have not been well represented by current land models
(Y. Fanetal., 2019; H. Lu et al., 2020). Therefore, major challenges remain in reducing predictive uncertainties
and improving the simulation accuracy of current land models (K. J. Beven & Cloke, 2012; Fisher &
Koven, 2020; MacBean et al., 2022).

Land observations provide measurements of key variables, such as soil moisture and land surface temperature that
govern land surface processes. These observational data are taken at specific observation times and within their
represented space. With the rapid development of different observation technologies, observational data of land
surface processes are exponentially increasing but irregularly distributed spatiotemporally, which creates sub-
stantial challenges in enhancing the usability of land observations to improve the understanding of land surface
processes. Since most observational data represent different spatiotemporal scales of a specific land surface
parameter or variable, their usability at various spatial scales is hampered (Moody & Woodcock, 1995). For
example, the representative space of in situ observations varies with different observation variables or parameters
and different observation methods and times. There may be a significant representativeness error when trans-
forming the in situ observations to other spatial units (e.g., model grid), which is closely related to the spatial
heterogeneity of observation variables. Similarly, the transformation of remote sensing observations to a model
grid may also introduce representativeness error. In addition, forward radiative transfer models are often needed
to transform the land surface state variables into estimated remote sensing observations, and the scale repre-
sentativeness of these models may also lead to representativeness errors. Therefore, it is a challenging task to
reduce the representativeness error of land observations to enhance their usability (Dokoohaki et al., 2022).

Furthermore, a deluge of big Earth data, such as massive quantities of Earth observation data and hyperdimen-
sional and unstructured nonmainstream data, provides both opportunities and challenges. Big Earth data
significantly enrich observational information but also result in the “curse of dimensionality” (Nguyen
et al., 2020). This situation exacerbates the challenges of improving the usability of these observational data, and
thus, a combination of land models and land observations is urgently needed to overcome both the predictability
and observability of land surface processes. Land data assimilation (LDA), which allows land models and
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Figure 1. The developments of land data assimilation (LDA) during the recent decades. The first phase focused on theory
building and application exploration. The second phase introduced a few pioneering practices in LDA systems (LDAS) and
software. The third phase addressed the challenges of coupled land—atmosphere DA and integration of machine learning and
LDA. (EnKF: Ensemble Kalman Filter, PF: Particle Filter, DART: Data Assimilation Research Testbed, PDAF: Parallel
Data Assimilation Framework, OpenDA: Open Data Assimilation library, ELDAS: European LDAS, NLDAS: North
American LDAS, GLDAS: Global LDAS, CLDAS: China LDAS, EO-LDAS: Earth Observation LDAS, NLDAS-2:
NLDAS second phase).

observations to complement and constrain each other, has emerged as a new discipline in land surface research to
address the fundamental challenges in the predictability and observability of land surface processes.

1.2. Land Data Assimilation: Model-Data Fusion to Generate the Optimized Estimation of Land Surface
States

LDA was introduced into land surface research in the early 1990s (McLaughlin, 1995), which aims to produce
estimates of land surface states, parameters, and fluxes that are as accurate as possible by using available
observational data in land models weighted by model and observation errors. Within the framework of LDA, land
models track the historical trajectory and predict the future change in land surface states and provide theoretical
interpretations for land observations; land observations, after quality control, provide “true values” of land surface
states in a specific space and at a specific time, which are ingested into model states via a feedback mechanism and
used as references for adjusting the model trajectory (X. Li, 2014). The key objective of LDA is to integrate direct
and indirect observations at different scales and from different sources within the framework of land models. As
such, LDA is able to characterize and control uncertainties and thus provides optimized estimation of land surface
states by maximally harmonizing modeling and observational data.

During the past three decades, LDA has seen rapid development and has become a mainstream methodology in
land surface research, and important progress has been made in regard to its theory, methodology and application
(Figure 1). From 1995 to 2000, LDA was introduced in hydrologic research, and LDA studies mainly focused on
the assimilation of soil moisture retrievals based on the ensemble Kalman filter (EnKF) algorithm. Since 2000,
more sophisticated methods, such as particle filters (PFs), have been introduced in LDA, and various large-scale
land data assimilation systems (LDASs) (see Section 4) and LDA software (see Section 5) have been developed.
After 2010, coupled land—atmosphere DA systems were developed, and the integration of machine learning and
LDA has received increasing research interest (see Section 6), reflecting the trend of combing theory and data in
the era of big data and artificial intelligence.

1.3. Essentials to Review Land Data Assimilation

Since significant progress has been witnessed in LDA in terms of theory, methodology and application, a holistic
review is needed to summarize its milestones, point out knowledge gaps and provide potential directions for
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future research. To the best of our knowledge, to date, there have been few comprehensive review articles on
LDA. Two early studies are either limited to the methods (e.g., linearization and uncertainties) and applications
(e.g., precipitation) of hydrologic data assimilation (McLaughlin, 1995) or place more emphasis on the advan-
tages of epistemic understanding in a general geophysical assimilation framework (Christakos, 2005). Other early
studies focused on two major approaches, that is, introducing a series of LDAs for assimilating remote sensing
data by using four-dimensional DA (Bach & Mauser, 2003) and reviewing hydrological DA with the extended
Kalman filter (EKF) and EnKF (L. Sun et al., 2016). A recently published review focused on some specific
aspect(s) of LDASs. For example, Y. Liu et al. (2012) conducted an in-depth review of operational hydrological
DA by describing the theorem and mathematical work, uncertainty, utilization of data and common software.
Montzka et al. (2012) reviewed assimilation strategies for different spatial scales and multisource observations.
Xia et al. (2019) summarized the developments of regional, global, and project-based LDAS and the associated
applications and validations. Additionally, Carrassi et al. (2018) provided a basic tutorial on LDA, and Baatz
et al. (2021) reviewed the various reanalysis (estimations of historical observational data spanning to the present
using an assimilation scheme) approaches in Earth system sciences, but with a specific focus on terrestrial
ecosystem reanalysis.

The key novelties and value additions of this synthesis compared to previous reviews are described as follows.
Our study aims at a comprehensive and in-depth review of the full spectrum of LDA, including distinguished
characteristics (distinct from atmospheric and oceanographic DA) in methodological developments, typical ap-
plications in terrestrial water and energy budgets, developments of global and catchment-scale LDASSs, and the
development of software tools for LDA. In addition, we propose some grand challenges, including generating
high-quality land surface forcing and long-time series land reanalysis, developing LDA operational system, and
exploring coupled land-atmospheric DA and critical zone DA. We prospect new trends in assimilating nontra-
ditional observational data, and combining big data and deep learning with LDA.

2. Theoretical and Methodological Innovations in Land Data Assimilation

LDA has distinguished itself as an innovative discipline from atmospheric and ocean DA due to the following
features: (a) high nonlinearity combined with states, fluxes and parameters that are scale dependent and spatially
correlated; (b) the non-Gaussian nature of model and observation errors; (c) the larger importance of forcing
compared to that of initial values; and (d) the high sensitivity of model prediction to parameters. These issues
require innovative theoretical and methodological development to reduce uncertainties from the nonlinearity and
multiscale heterogeneity of land models and observations (Figure 2).

LDA theory and methods are anticipated to incorporate new approaches such as machine learning and to address
uncertainty and its propagation. In addition, they are expected to establish general principles that can address the
complexities of real-world scenarios, including nonlinear and non-Gaussian characteristics, and to develop robust
and adaptive algorithms. These efforts will help LDA address the challenges arising from the analysis of big earth
data, leading to the construction of real-time control systems for digital twins of land surface processes.

2.1. Continuous Versus Sequential Data Assimilation

DA methods are generally classified into three categories: continuous, sequential, and combined continuous-
sequential methods. Continuous DA methods are predominated by variational methods, while sequential DA
methods mainly consist of various Bayesian filter methods, such as the EnKF, PFs, and variants of these filters.
The combined continuous-sequential DA methods integrate sequential methods and continuous methods. This
section introduces the advantages and disadvantages of different DA methods, aiming to provide insight into a
comprehensive understanding of the LDA methodological framework, thus guiding the application of these
methods.

2.1.1. Continuous Data Assimilation Methods

The 3D- and 4D-variational (4DVAR) DA (Lorenc et al., 2000; Rawlins et al., 2007) are the most frequently used
continuous DA methods, but they require an adjoint model for minimizing the cost function. However, few efforts
have been devoted to developing adjoint land models because the work is tedious and error prone (Margulis &
Entekhabi, 2001; Reichle, McLaughlin, & Entekhabi, 2001; Raoult et al., 2016). Alternatively, heuristic opti-
mization methods, such as simulated annealing (Pathmathevan et al., 2003) and genetic algorithms (Dumedah &
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Figure 2. The generalized framework of Land Data Assimilation (LDA) consists of two primary steps: forecasting and analysis. During the forecasting step, land models
are employed to generate predictions. In the analysis step, various observations are assimilated by mapping the model states to the observations in a specific spatial
location and temporal range using the observation operators (e.g., radiative transfer models).

Coulibaly, 2013b), have been successfully applied in LDA. The heuristic methods outperform variational
methods in finding global optima in the hilly structure of the cost function. However, they usually require tens of
thousands of iterations to find the global optimum, hampering their operational use in LDA.

2.1.2. Sequential Data Assimilation Methods

Linear and Gaussian assumptions are usually unrealistic for land models because high-dimensional and
complicated land models involve full nonlinearity physics and non-Gaussian states (Apte et al., 2007). There
are also many thresholds in land models, for example, the upper and lower bounds of soil moisture, meaning
that the state variable is distributed in a truncated Gaussian state (Baguis & Roulin, 2017). Therefore, the EnKF
is appealing for LDA because it can tackle the nonlinearity problem. Additionally, the EnKF avoids computing
the tangent linear or adjoint of the model and observation operators, making it easier to implement (Even-
sen, 2003; Kalnay et al., 2007). Moreover, many variants of the EnKF, such as the ensemble transform Kalman
filter (ETKF, (Bishop et al., 2001)), have been proposed to avoid observation perturbation. Spatiotemporally
chaotic behavior is an important characteristic of the EnKF, which may lead to spurious correlations between
distant locations in the background covariance matrix (Hunt et al., 2007). To this end, the local ensemble
transform Kalman filter (LETKF, Hunt et al., 2007) is introduced to capture the space of forecast uncertainties
via a localization scheme, that is, a cutoff radius is applied to eliminate spurious correlations. Other nonlinear
and non-Gaussian KFs, such as the unscented KF (Julier & Uhlmann, 2004) and central difference KF (Van Der
Merwe, 2004), have not yet been applied in LDA because some of these methods cannot handle high-
dimensional problems.

To overcome the Gaussian assumption of EnKF-based methods, a more universal method, that is, PF, adopting
Monte Carlo and importance sampling, has been successfully introduced in LDA to solve the non-Gaussian/
nonlinear assumption (Moradkhani, Hsu, et al., 2005; Van Leeuwen, 2017), which demonstrated that PF is su-
perior to EnKF in several synthetic tests (DeChant & Moradkhani, 2012; Kivman, 2003). However, the MCMC
resampling method subjectively determines the resampling step and acceptance probability of the candidate
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points, hence artificially enforcing the convergence of the sampled parameter values to a too narrow distribution.
To overcome the limitation of parameter convergence, a particle-Differential Evolution Adaptive Metropolis
(particle-DREAM) method was developed (Vrugt, 2016; Vrugt et al., 2013; Vrugt & Ter Braak, 2011). The
particle-DREAM applied a different definition of the Metropolis acceptance probability to guarantee that MCMC
resampling leaves the target distribution invariant. In addition to synthetic studies, real case studies regarding the
PF have witnessed success in LDA (Abbaszadeh et al., 2018, 2019, 2020; Gavahi et al., 2020; L. Xu et al., 2020).
However, the time consumption, filter degeneracy, and PF dimensionality problems hamper the precise esti-
mation of the posterior. Resampling and PF variants can partially solve this issue by mitigating weight degen-
eration for particles (Bocquet et al., 2010). Advanced PFs, for instance, equivalent-weights PF (Ades & van
Leeuwen, 2013), ensemble transform PF (Reich, 2013), and particle batch smoother (Dong et al., 2015), were
developed and used in LDA. Another direction focuses on the hybrid scheme of PF and EnKF (Frei &
Kiinsch, 2013) to exploit their respective strengths. Additionally, the first attempt to use Markov chain Monte
Carlo (MCMC) in conjunction with PF in hydrologic data assimilation (Moradkhani et al., 2012) effectively
improves the resampling of particles and increases the number of effective particles (Abbaszadeh et al., 2018).
Furthermore, PF and genetic algorithms have been coupled and applied to improve soil moisture DA (Gavahi
et al., 2020; L. Xu et al., 2020) and land model performance (C. Zhang et al., 2021). Nevertheless, these new
approaches should be adopted in more realistic nonlinear and non-Gaussian LDAs to validate their usefulness and
efficiency.

Ensemble filters cannot handle asynchronous observations, probably leading to the loss of water and energy
balance constraints due to the limited ensemble size (Kalnay et al., 2007). To address the asynchronous obser-
vations, the ensemble Kalman smoother (EnKS) (Evensen & van Leeuwen, 2000) and particle batch smoother
(Dong et al., 2015) were developed for use in LDA (Dunne & Entekhabi, 2006). To overcome the limitation of
ensemble size that causes the underestimation of forecast error variance, covariance inflation is usually adopted
(Miyoshi, 2011), in which various adaptive inflation approaches are applied to obtain optimal inflation param-
eters, such as Bayesian estimation-based (J. Anderson et al., 2009) and statistically based methods (H. Li
et al., 2009).

2.1.3. Combined Continuous-Sequential Data Assimilation Methods

The development of hybrid approaches that combine the advantages of continuous and sequential DA methods is
a promising direction. A typical scheme uses the ensemble-estimated forecast error covariances to replace (or be
part of) the background error covariances in 4DVAR and resets the ensemble mean via 4DVAR analysis
(Bannister, 2017; Buehner et al., 2010; M. Zhang & Zhang, 2012). This scheme outperforms in limited ensemble
sizes and assimilation windows and generates smaller errors. However, as noted by X. Tian et al. (2018), the
traditional ensemble four-dimensional variational (En4dDV AR) DA still strongly depends on the adjoint model of
the underlying forecast model and hence is more complicated and requires much more computational time. Thus,
a nonlinear least square En4DVar (X. Tian et al., 2018) was proposed to overcome these issues. Additionally, a
variational ensemble DA framework was developed for the Joint UK Land Environment Simulator (JULES) land
surface model (Pinnington et al., 2020), and a coupled 4DVar-PF approach was proposed (Abbaszadeh
etal., 2019). These novel combined continuous-sequential DA methods, being unified in the Bayesian theoretical
framework, are expected to provide new insights into improvements in future LDAs. For instance, the combined
method could simultaneously produce estimates of state variables and parameters and improve the estimation of
the posterior distribution, hence simultaneously improving the estimation of the state variables and parameters as
well as their uncertainties (Abbaszadeh et al., 2019).

2.2. Quantification and Reduction of Uncertainties

The quantification and reduction of uncertainties related to understanding non-Gaussian and nonlinear land
surface processes, initial states, boundary conditions, model parameters, and observations are illustrated in
Figure 3. Managing these uncertainties is inherently complex and intractable, and should consider their specific
features, such as the forcing uncertainties caused by spatial-temporal averaging in hydrologic (Moradkhani &
Sorooshian, 2008) and Hydrometeorological predictions (Moradkhani et al., 2019), and multiscale spatial cor-
relations and heterogeneities (Vereecken et al., 2015, 2022).

LIET AL.

6 of 45

85U8017 SUOWILIOD AR 3|edldde au) Aq pausenob ale Sapie VO 88N JO Sa|N1 1oy Akeiqi 8UlJUO A8]IAN UO (SUOTHPUOD-PUR-SLLBIWI0D" A3 |IMAle1q 1 BUIUO//SANU) SUOTPUOD pUe SWe | 8L} 89S * [¥202/70/60] UO ARIq1T8uluO A8 |1 *BIUBD 4o1easay HAWS Yo!ne winiuezsbunyasiod Aq T08000942Z02/620T 0T/I0p/wod A8 1M AselqijeutjuosgndnBe//sdny woiy papeo|umoq ‘T ‘¥202 ‘8026vv6T



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Reviews of Geophysics 10.1029/2022RG000801

K Methods to quantlfy and reduce . \
" the uncertainties in LDA

|

A. Model uncertainty B. Forcing uncertainty

Perturbation Perturbation

Bayesian model averaging Feedback from the state

Inflation

C. Parameter uncertainty

D. Observation uncertainty | [Sensitivity analysis

e Parameter boundaries

e Ranking
Moment-based method o Screening

Likelihood-based method Parameter estimation

e Global optimization

Observational experiments « Bayesian statistics

2

Figure 3. Methods to quantify and reduce the uncertainties in LDA: the uncertainties mainly stem from the model, forcing,
parameter, and observation.

2.2.1. Model Uncertainty

Model uncertainty denotes the deviation of the state estimate of the model from the state truth (usually unknown),
which partially arises from various sources, such as inadequate representations, omission of physical processes
within the model structure (Abbaszadeh et al., 2019), and challenges in parameterizing structural error in land
models (Pathiraja et al., 2018a, 2018b; Pathiraja, Moradkhani, et al., 2018). In LDA, model uncertainty is
typically either ignored or simply treated by adding Gaussian white noise to the model states, for example, using
the perturbation method (Figure 3a) (Crow & van den Berg, 2010). Another approach involves ensemble
modeling (DeChant & Moradkhani, 2014). This approach entails running a set of independent ensemble members
in a model or multiple models, and employing Bayesian model averaging to assess model structural uncertainty
(Figure 3a) (Parrish et al., 2012).

An additional focus is to quantify posterior model uncertainty during land model simulations. This approach
addresses the evolution of model error during the sequential update of model states and the error covariance
matrix. In EnKF, filter collapse may occur as the sampling error is caused by the limited number of ensembles and
usually underestimates the model error covariance. To address this underestimation, various inflation methods
(Figure 3a) have been developed, such as multiplicative inflation (D. D. Anderson et al., 1999), additive inflation
(Hamill & Whitaker, 2005), and the “relaxation-to-prior” method (H. Zhang et al., 2004). Such inflation ap-
proaches require ad hoc tuning to determine the optimal inflation factor. Therefore, some statistically based
methods have been proposed to directly estimate lower-order model error statistics, such as those that are time-
dependent and spatially correlated (Zheng, 2009). However, inflation methods assume unbiased model errors;
therefore, bias correction techniques have been further applied to estimate and correct systematic errors (De
Lannoy et al., 2007; Q. Zhang et al., 2019: Y. Zhang et al., 2019). Moreover, another stochastic parameterization
scheme has been proposed to implicitly estimate model error statistics beyond unbiased Gaussian white noise,
such as the crossover principle-based inflation (Bai & Li, 2011). Recently, an adaptive covariance inflation
method was developed for model uncertainties in the EnKF (Raanes et al., 2019).
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Capturing model uncertainty in the presence of input uncertainty in land surface modeling is challenging and
involves controlling parameter or forcing uncertainty and addressing scale issues. One strategy for quantifying
model error induced by input uncertainty is to conduct sensitivity analyses on parameter values or forcing data. A
promising method is to use data-driven approaches, which possess advantages in handling limited prior
knowledge of model uncertainty (Pathiraja et al., 2018a, 2018b; Pathiraja, Moradkhani, et al., 2018). To
comprehend uncertainties stemming from spatial variability, a multiscale data assimilation (DA) framework is
essential. Such a framework enables the assimilation of data sets with diverse spatiotemporal resolutions,
facilitating the differentiation of model errors through the analysis of model outputs.

2.2.2. Forcing Uncertainty

The near-surface meteorological forcing (such as precipitation, radiation and air temperature) as the boundary
condition of the model significantly affects the model state evolution of land models (Moradkhani et al., 2006).
There are numerous methods to account for forcing data uncertainty. The most commonly used method is the
forcing perturbation (Figure 3b). For example, a normally distributed random fluctuation with a mean of zero and
a standard deviation equal to 50% of the nominal value was added to the initial forcing in the EnKF (Margulis
et al., 2002). Later, Margulis et al. (2006) proposed a simple ensemble-based disaggregation scheme incorpo-
rating remotely sensed precipitation data in hydrological applications. In addition, conditional simulation
methods have the potential to provide more reliable uncertainty estimates of model forcing (Clark & Slater, 2006).

An alternative method involves using feedback from the state variable to correct the forcing error (Figure 3b). For
example, a DA approach that feedbacks the surface soil moisture via a soil water balance model to the rainfall
magnitude to correct the rainfall accumulation error and analysis increments contains recent rainfall errors (Crow
& Ryu, 2009). This approach has been further refined by considering the non-Gaussian distribution of the errors in
rainfall by introducing the EnKF and PF (Crow et al., 2011). However, most of these works are empirical. Using
robust/adaptive DA methods, such as the H-infinity filter, is a promising direction because it does not need prior
information of model error and is insensitive to the forcing uncertainty (H. Lii et al., 2010; D. Wang & Cai, 2008).

2.2.3. Parameter Uncertainty

In contrast to atmospheric and oceanic DA, quantification of parameters uncertainties is of unique importance in
LDA because overparameterization (C. Wang et al., 2016) and equifinality (K. Beven & Freer, 2001) are two
major challenges in LDA. Estimation of model parameter uncertainty is usually preceded by sensitivity analysis,
involving the establishment of parameter boundaries, ranking parameters, and subsequently screening the most
sensitive ones (Figure 3c) (Gan et al., 2014; C. Wang et al., 2016). Parameter uncertainty estimation methods can
be grouped into two categories: global optimization or Bayesian statistics. Global optimization converts
parameter estimation for the land models into an optimization problem under the assumption of a unique optimal
parameter set. Many attempts have been made with probabilistic parameter inference methods by mapping model
uncertainty onto model parameters, such as SCE-UA algorithms (shuffled complex evolution method developed
at the University of Arizona) (Duan et al., 1992). A typical LDA application entails the Shuffled Complex
Evolution Metropolis (SCEM) algorithm in vadose zones and groundwater hydrology (Vrugt et al., 2003). The
second type of method converts parameter estimation for the land models into a statistical inference problem that
can be solved using Bayesian statistics, assuming parameters are random variables following a jointed probability
distribution. In practice, a framework of sequential Monte Carlo with a genetic algorithm, differential evolution
algorithm and Metropolis—Hasting algorithm was developed to evolve a population of particles to approximate
the posterior parameter distributions (Zhu et al., 2018). Recent advances consider time-variant errors of pa-
rameters and then simultaneously estimate the model state and time-variant parameters, as detailed in Section 2.3.
While comprehensive reviews on the quantification and reduction of parameter errors have been conducted by Y.
Liu et al. (2012) and C. Wang et al. (2016), this paper provides a brief overview of parameter error estimation.
Further developments are expected to produce more meaningful uncertainty estimation methods.

2.2.4. Observation Uncertainty

Observation uncertainty can be decomposed into instrument and representativeness errors (J. A. Waller
et al., 2014). Instrument (or measurement) errors are associated with the corresponding measuring devices.
Representativeness error, also called the forward model error, observation-operator error (Janji¢ et al., 2018),
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refers to the error generated either by mapping the model state from its model unit to the representative space of a
certain observation or by mapping a model variable to the raw remote sensing observation (X. Li, 2014). LDA
utilizes abundant raw remote sensing observations (Lewis et al., 2012) and directly assimilates these raw ob-
servations, such as reflectance, thermal emissivity, backscattering coefficient, and brightness temperature from
passive microwave remote sensing. However, incorporating these raw observations necessitates the development
of sophisticated observation operators. Typically, these observation operators are typically nonlinear and have
remarkable representativeness errors. Methods to estimate representativeness error include moment-based
methods (i.e., mean and variance methods), likelihood-based methods, and observational experiment-based
estimation methods (Figure 3d).

Moment-based methods assume that the theoretical and empirical moments of the innovations (the deviations
between forecasted and updated states or between the observations and states mapped in the observation space)
are equal. Within the DA community, the Desroziers diagnostic is popular for examining various innovation
statistics in the observation space (Desroziers et al., 2005). Most of the methods developed to date use this
diagnostic. Kotsuki et al. (2017) estimated the real observation error covariance matrix, including horizontal
observation error correlations, for densely observed data from satellites and radars. Guillet et al. (2019) proposed
a method to represent spatially correlated observation errors in variational DA when the number of horizontally
error-correlated observations is much larger. Another way to estimate error covariances is to exploit cross-
correlations between lag innovations, namely, innovations between consecutive times. Empirical methods,
such as the one proposed by Berry and Sauer (2013), have been established for nonlinear systems in DA.
However, these methods have yet to be tested in the LDA system, and the idea of using lagged innovations seems
to have great potential.

The statistics-based methods that employ maximized likelihood to determine optimal parameter values can be
roughly divided into two categories. One approach uses a Bayesian framework, in which the elements of the
covariance matrices are assumed to have a priori distributions with hyperparameters. The second involves
maximizing a likelihood function using the iterative expectation—-maximization algorithm. Pulido et al. (2018)
used the expectation—maximization procedure to produce estimation matrices in Lorenz-96 systems. Recently,
Cocucci et al. (2021) proposed an online adaptation of the expectation—maximization algorithm for the estimation
of observation error at each time step. For LDA application, J. Tian et al. (2022) developed a dual-cycle data
assimilation approach for soil moisture, in which the model and observation errors are adjusted through an
optimization algorithm to optimize the likelihood function by innovation time series.

Finally, the observation errors are statistically a priori; therefore, they should be understood and quantified from
observational experiments, particularly densely distributed, multiscale experiments (X. Li et al., 2013). For
example, representativeness errors of solar radiation, surface fluxes, such as evapotranspiration and carbon di-
oxide flux, land surface temperature, and soil moisture, were investigated during a multiscale land surface process
experiment (Pan & Wood, 2009). The representativeness error of in situ observations is very large, and the
probability of using a single in situ observation to represent a model grid-scale ground truth is very low.

In general, quantifying and reducing the uncertainties in LDA is challenging when considering the interactions
among the above four types of uncertainties. Many existing strategies are either empirical or statistical, often
relying on prior information that cannot be obtained, such as randomly distributed observational data. This
finding highlights the need for further study to better understand the underlying processes involved. Regarding the
unique characteristics of LDA uncertainties, data-driven approaches and robust methods, such as the H-infinity
filter, hold potential for developing knowledge-based techniques and robust, adaptive assimilation algorithms.

2.3. Simultaneous Estimation of Model States and Parameters

In land models, parameters could be more impactful than the initial field of state variables on the model per-
formance. However, many parameter values are either unknown or only available at specific locations (i.e.,
limited spatial coverage) and are time-dependent. Traditional LDA only updates the model state while utilizing
the default model parameter values, which inevitably leads to large uncertainties in the model predictions due to
inaccurate model parameter values (Smith et al., 2013). Thus, accurate estimation of both state variables and
model parameters is indispensable. Two distinct methods have been proposed to alleviate uncertainty in LDA by
performing joint estimations of model states and parameters.
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The first type of method is the state augmentation method, which regards the model parameters as state var-
iables, whereby the original state vector is augmented with both the state variables and model parameters
(Hendricks Franssen & Kinzelbach, 2008; Moradkhani, Sorooshian, et al., 2005). Thus, parameters are
simultaneously updated with state variables in the LDA. The newly analyzed parameter values are then fed
back into the model to affect the next forecast of state variables. Through this analysis-forecast evolution, the
model gradually generates more accurate parameters and state estimates, and therefore, the method can
effectively diminish the long-term systematic deviations and weaken the stochastic errors of the model forecast
by estimating the time-varying characteristics of model parameters (X. J. Han et al., 2016; J. Qin et al., 2009).
The state augmentation method explicitly accounts for the cross-covariance between the state and parameters,
with the advantages of a simple principle, easy implementation, and high efficiency. However, this approach
suffers from limitations arising from several aspects, such as challenges in accurately estimating parameters and
states in cases with sparse observations and controlling the convergence of the model simulation and parameter
estimation due to complex interactions between state and parameters in nonlinear dynamic systems (Mor-
adkhani, Sorooshian, et al., 2005). In addition, treating parameters as state variables implies that they are time-
varying, which may not be reasonable because some model parameters (e.g., soil texture) are essentially time-
invariant (J. Tian et al., 2022).

The second type of method is the dual-pass/dual-cycle approach, in which system updating entails two passes
or two cycles compared to the traditional DA approach. This method first estimates parameters by using DA or
an optimization algorithm and then estimates state variables based on the optimized parameters. Previous
studies have provided two different methods to accomplish this task: (a) both parameters and states are
recursively updated by fitting or assimilating observations in each time step, and the parameters are treated as
time-varying variables (Moradkhani, Sorooshian, et al., 2005). (b) the first pass or outer loop estimates time-
invariant parameters by fitting observations within a long-term window, and the second pass or inner loop
estimates the land state by assimilating observations in a short-term window (J. Tian et al., 2022; Vrugt
et al., 2005; K. Yang et al., 2007, 2009, 2016; C. Zhang et al., 2021). The separated representation of state
variables and parameters in the dual-pass/dual-cycle approach makes it possible to obtain more appropriate
estimates for state variables and parameters. This method avoids the complex interactions between states and
parameters. Compared to the state augmentation approach, the dual-pass/dual-cycle approach usually shows
better robustness, but its heavy computational load hinders large-scale applications. A noticeable issue of the
dual-pass approach is the overuse of observational information (each observation is used twice), which may
cause an overcorrection problem. In addition, a fundamental assumption of the type of ensemble Kalman al-
gorithms is that the state variables and observations are independent. However, the dual-pass/dual-cycle
approach utilizes observations to alternately estimate parameters and states, which may undermine this
hypothesis.

The simultaneous estimation of model states and parameters has offered unique opportunities for LDA de-
velopments. First, it can reduce the reliance on extensive data collection, which is particularly useful when data
collection is expensive or time-consuming. Second, it can provide insights into the underlying processes that
govern system behavior. By estimating model parameters together with model states, researchers can identify the
most influential factors driving system dynamics. However, one of the main challenges is that the states and
parameters are often entangled, which may lead to the problem of parameter and state identifiability in the context
of simultaneous estimation of states and parameters. In this case, the constrained estimation of states and pa-
rameters can be considered, which may reduce the entanglement of states and parameters. Overall, the simul-
taneous estimation of model states and parameters offers a promising avenue for improving our understanding of
complex systems and enhancing their control.

2.4. Multiscale Land Data Assimilation

Heterogeneity and related uncertainties are intrinsic properties of the land surface state variables, boundary
conditions, and parameters (X. Li, 2014), but they are usually assumed to be deterministic processes at the
microscale. In addition, many Earth observations from different sensors recorded at different temporal and spatial
scales reveal that the representative spaces of models and observations have multiscale characteristics (X. Li
et al., 2020). The multiscale characteristics of land modeling and observations require that the LDAs integrate
model predictions and observations at different spatial and temporal scales. Multiscale LDA addresses the
abovementioned issues and includes two types of methods.
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First, the EnKF, PF, or variational methods are applied to simultaneously assimilate variables at different scales
when multiscale measurements are available, such as the DA strategy of simultaneously estimating the multiscale
leaf area index (LAI) from multiresolution satellite observations (Q. Zhang et al., 2019a). To solve the problem of
scale mismatch, either an observation operator with spatial weight is constructed (X. J. Han et al., 2016), or
scaling techniques, such as the interpolation method (C. S. Draper et al., 2012), statistical upscaling (Zhao
et al., 2016), prior fusion or downscaling (Merlin et al., 2006), are performed before assimilation. The most
common examples for multiscale LDA are the assimilation of coarse-resolution soil moisture contents (Lievens
etal., 2016; Reichle, Entekhabi, & McLaughlin, 2001) or snow water equivalents (De Lannoy et al., 2012; Durand
& Margulis, 2008) into finer spatial scale hydrologic models.

Second, multiscale filtering approaches are developed. An optimal multiscale Kalman filtering method has been
proposed (Parada & Liang, 2004) to assimilate near-surface soil moisture into the three-layer variable infiltration
capacity (VIC-3L) land surface model. A multiscale Kalman smoother (MKS) has also been developed (S. Wang
etal., 2011) to fuse precipitation data from diverse sources with different spatial resolutions. The results show that
the MKS-based framework can significantly restore the loss of spatial patterns and magnitude of precipitation
associated with white noise and bias. These approaches also put forward the criteria for determining the optimal
spatial scale when using the given data at different resolutions. A multiscale autoregressive framework, which
processes signals that exhibit multiscale features, can provide a method for identifying the multiscale structure in
signals and a filtering procedure. The multiscale autoregressive provides an efficient way to solve the optimal
estimation problem for many high-dimensional dynamic systems. Therefore, a multiscale ensemble filtering
system can efficiently address multiscale DA problems based on the multiscale autoregressive framework (M.
Pan et al., 2009).

In short, multiscale LDA presents valuable insights into the complex interactions between land surface processes
at different scales by integrating data from various sources. Although the theory of the multiscale DA method has
been applied in LDA, the usability and stability of multiscale LDA algorithms are still not at operational stan-
dards, as data from different sources may have different uncertainties, and it is also difficult to manage the
propagation of uncertainty. Future research should focus on the development of new methods and tools, such as
more advanced scaling methods, improved DA algorithms that can effectively integrate data from multiple
sources, and uncertainty quantification methods.

2.5. Spatial Correlation and Localization

Considering Tobler's first law of geography, spatial correlation is inherent in land surface processes. Spatial
correlations in land surface processes are typically dominant at smaller scales (less than 1 km) compared to those
in meteorological and oceanic processes (ranging from dozens of to hundreds of kilometers). In addition, land
surface processes present more complex multiscale spatial correlations. Spatial correlation in LDA can play
multiple roles, including predicting the no-value region using spatial interpolation (the correlation ranges and
basic semivariogram models among multiple scales should be estimated in advance), characterizing the model
errors and observation errors, and reducing the sampling error of the background error for the localization
problem in ensemble-based DA (Buehner & Charron, 2007).

The mainstream approaches to consider spatial correlations in LDA use geostatistical techniques. Some methods
can improve the assimilation efficiencies, for example, to compensate for the inaccuracies of macroscale rainfall-
runoff simulations by assimilating streamflow observations (Pugliese et al., 2018) and to determine an adequate
observation sequence to be assimilated based on semivariogram analysis (X. Han et al., 2012). Other works
include developing new assimilated algorithms, such as introducing kriging into EnKF to simplify the time-
consuming assimilation algorithm (Tolosana-Delgado et al., 2011). The spatial correlation of observations has
been explored in LDA (X. Han et al., 2012), in which Gaussian, exponential and spherical spatial correlation
functions from geostatistics were fitted and used in observation localization to update the uncovered region.

In LDA applications, when the number of ensemble members in the EnKF is smaller than the degree of freedom in
the model operator, spurious spatial correlations and large sampling errors in the approximation of the back-
ground error covariance can be generated. Therefore, covariance localization (J. L. Anderson, 2012) and
observation localization (Hunt et al., 2007) have been proposed to eliminate spurious spatial correlations in
ensemble-based high-dimensional and multivariable LDA. Devegowda et al. (2010) illustrated that the 50-
member ensemble in flow data assimilation causes spurious correlations, while introducing localization can
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Figure 4. Integration of machine learning and LDA. Machine learning is used for model parameter optimization, model
process/subprocess agent, assimilation system deviation correction, observation operator modeling, DA algorithm
substitution, and LDAS surrogation.

correct this fault. The estimation with localization performs similarly to that from the 1000-member ensemble.
The localization is generally implemented as a Schur product between the background (or observation) error
covariance matrix and a spatial correlation-dependent function (or matrix). This localization function determines
the observation assimilated during the analysis step. A typical function is GC (Gaspari & Cohn, 1999), but using
different localization functions empirically with respect to observation types (such as temperature and u- and v-
wind) might have limited improvement (L. L. Lei et al., 2015). The localization method encounters the following
issues in LDA. (a) The localization function reduces the local analysis error at the cost of increasing the global
analysis error. (b) The distance-dependent localization function needs to be refined for strongly heterogeneous
and structured observations.

Current localization functions are statistical and empirical, and whether they vary with observation type (Y. Chen
& Oliver, 2010) and spatial correlation characteristics in a specific study area has not yet been theoretically
determined (L. L. Lei et al., 2015). Therefore, unifying the knowledge in geostatistics and the spatiotemporal
representation of geophysical variables is a promising direction for improving studies on spatial correlation and
localization.

2.6. Symbiotic Integration of Machine Learning and LDA

The data-driven machine learning (ML) method can thoroughly explore the spatiotemporal heterogeneity
characteristics of land surface variables from historical data to optimize known parameters and processes or
discover unknown parameters, state variables, and processes contained in the physical systems. In addition, it can
learn the complex relationship between model or observation errors and related variables without a large amount
of prior knowledge about various uncertainties in LDA systems. That is, ML leverages knowledge about the
structure of data to enhance the accuracy and efficiency of physical process models. The integration of ML with
LDA is a relatively new but quickly growing area of research and focuses on (Figure 4) (a) providing parametric
time-varying boundaries or driving conditions in land surface models (Sawada, 2020; Q. Zhang et al., 2019a); (b)
replacing the empirical or semiempirical process or subprocess and even the entire physical process model (Bao
et al., 2020; Hou et al., 2021; Tang et al., 2021; Y. Wang et al., 2021); (c) correcting the system deviation of the
physical model (King et al., 2020; Q. Zhang et al., 2019a); (d) developing the observation operator model (Kwon
et al., 2019); (e) acting as a data assimilation algorithm (Boucher et al., 2020); and (f) surrogating the entire
assimilation system to reduce computational complexity (P. J. Li et al., 2020). Moreover, DA can also be in-
tegrated into ML, although there is currently no relevant study available in LDA. However, there have been
successful cases in the field of numerical weather prediction. For example, S. G. Penny et al. (2022) integrated
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DA with RNNSs to perform data-driven state estimation, where RNNs served as pretrained surrogate models for
key components in the DA cycle in numerical weather prediction, and DA updated the hidden states of the RNN
dynamics using observations of the target system. The study demonstrated that integrating DA and RNNs can
generate reasonable representations of the system response to uncertainty in initial conditions.

Integrating DA into artificial intelligence (Al) yields new hybrid methods. DA provides an opportunity to
address these pain points (e.g., gradient dependence learning process, offline training modes, low interpret-
ability, and weak generalization ability) of Al, such as using DA to train Al models to construct gradient-free
Al frameworks (B. Chen et al., 2022; C. Chen et al., 2022), embedding the kinetics of physical models
through four-dimensional variational form loss function to obtain interpretable AI models (W. Wang
et al., 2024), and developing online real-time Al models with high generalization ability by utilizing DA to
optimize the parameters and states of learning models when new observations are available (Malartic
et al.,, 2022). In short, established DA concepts and approaches are contributing to the development of
innovative Al algorithms, which may provide some benefits even for moving toward artificial general in-
telligence (AGI).

It is encouraging that ML and LDA can be combined and complement each other (Buizza et al., 2022). The
symbiotic integration of ML and LDA has two benefits. First, ML's ability to analyze a large amount of data in
a shorter time and model the complex patterns in Earth system science may help LDA to (a) handle the
dilemma that makes it difficult to obtain analytical solutions for complex partial differential equations in land/
hydrological models (Tang et al., 2021; Y. Wang et al., 2021); (b) reduce the high computational complexity
caused by a large number of iterative numerical calculations in solving physical equations (Bao et al., 2020;
Hou et al., 2021; and (c) discover hidden knowledge and rules in the physical model to improve the simulation
accuracy of land models (Yeung et al., 2022). Second, the constraints of physical knowledge contained in the
physical model may help ML to (a) improve the spatiotemporal representation of training samples by enhancing
the diversity of samples or features and strengthening the quality of training samples and (b) implicitly adhere
to the relevant physical rules and relationships, which helps to improve the physical consistency, interpretability
and extrapolation ability of ML models (Q. Z. He et al., 2020). In short, the integration of ML and LDA has the
potential to provide a very appealing solution for a more accurate estimation of land surface variables, fluxes,
and parameters.

Nevertheless, the symbiotic integration of LDA and ML still faces significant challenges. First, the observations
in LDA are usually sparse, irregular, and locally distributed. That is, when integrating LDA and ML, few-shot
learning or insufficient label sample (or even no label samples at all) learning must be addressed. In this case,
how to use physical constraints to enhance the spatiotemporal representation of ML samples is a difficult
problem. Second, it is also difficult to use the knowledge of geophysical laws, physical invariance, and physical
relationships in the physical model to guide and optimize the learning process to obtain a physically consistent
solution, that is, develop new physically guided ML models under the framework of LDA (Yeung et al., 2022).
Third, the prediction of LDA presently relies mainly on geophysical theory-driven models. Under the new
framework of coupling LDA and ML, it is necessary to consider how to alternately perform the assimilation
process and ML modeling through the dual driven theory-data approach to enhance the forecasting ability of the
system (Hou et al., 2021). This integration is expected to construct a real-time control layer for digital twins of
land surface processes (X. Li et al., 2023).

3. Applications of Land Data Assimilation in Estimating Land Surface Variables

To date, LDA has witnessed a large amount of progress in the estimation of land surface variables by assimilating
multisource and multiscale observations. This has distinguished LDA as an indispensably innovative solution for
land surface science and inevitably provides insights into the accurate quantification of land processes in the
future. This section comprehensively reviews the progress of assimilating key land surface variables (Figure 5),
particularly, hydrological state variables and fluxes into different physical models to improve their predictability
and accuracy. Table 1 summarizes the critical hydrology variables in LDA, including LDA methods, physical
models, data products, as well as scientific significance. This summary aims to provide a skeleton of application
of LDA in hydrology research. Through overviewing the milestone progress, the future insight and implication of
LDA in hydrology research are expected to be identified.
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Figure 5. Assimilation of multisource and multiplatform observations (satellite, airborne, ground) into land models to improve the predictability of land surface variables
(e.g., soil moisture, snow water equivalent/snow depth, groundwater, evapotranspiration, land surface temperature).

3.1. Soil Moisture

Soil moisture estimation has typically served as one of the most active applications of LDA. Vice-vera, LDA has
become the main-stream approach to generate soil moisture products with spatiotemporal continuity and physical
consistency. Although model-data fusion was used in estimating the soil moisture profile in the early 1980s
(Jackson et al., 1981), advanced DA methods were introduced in this field in the mid- 1990s. For example,
Entekhabi et al. (1994) demonstrated the feasibility of estimating soil moisture and temperature profiles by
assimilating remote sensing observations and McLaughlin (1995) noted that LDA could not be fully realized until
the availability of extensive sources of observations was developed. The work by Houser et al. (1998) was the first
real case to assimilate airborne microwave radiometer observations into the TOPMODEL-based land-atmo-
sphere transfer model based on a four-dimensional DA scheme. This pioneering work paved the way toward
booming applications of DA in land surface studies.

Since then, soil moisture DA progressed along the pathway from single to multiple variables, from linear and
Gaussian assumptions to nonlinear/non-Gaussian processes, and from 1D assimilation to consideration of spatial
correlation and localization. The practice of soil moisture DA has demonstrated the applicability of sequence DA
methods and demonstrated the importance of introducing spatial correlation. Given the nonlinearity of the
Richards equation, which governs soil moisture flow, the EKF has been applied by developing the adjoints of the
Richards equation (Entekhabi et al., 1994; J. P. Walker & Houser, 2001). EnKF is most commonly used because
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of its strong ability to handle nonlinear problems without developing an adjoint (Dumedah & Walker, 2014;
Huang, Li, Lu, & Gu, 2008; Huang et al., 2016; Margulis et al., 2002). Additionally, various localization tech-
niques and ETKF/LETKF were used in soil moisture DA (Wu et al., 2016) to effectively cut off the spurious
correlation. More recently, a more advanced particle filter DA was applied to soil moisture estimation and drought
monitoring (L. Xu et al., 2020).

Quantifying and reducing uncertainty are some of the most important tasks of soil moisture DA (Moradkhani,
Hsu, et al., 2005). In particular, the spatial representativeness error in soil moisture strongly hampers the
advancement of soil moisture DA (X. Li, 2014). To address the challenge of quantifying spatial representa-
tiveness, a series of large-scale soil moisture experiments have been conducted since 2002 (J. M. Jacobs
et al., 2004), such as the Australian Airborne Cal/val Experiments for SMOS (Peischl et al., 2012), SMAPEx (Ye
et al., 2021), NAFE (Panciera et al., 2008), and HHWATER (X. Li et al., 2013). Pixel-scale and watershed-scale
observations of soil moisture, by capturing heterogeneity, have enabled the quantification of unique represen-
tation errors at different scales. In addition, methods have been developed to quantify the scale-associated
representativeness errors in soil moisture remote sensing forward modeling and inversion algorithms, which
provide prior information for the observation error covariance of soil moisture in LDA.

In addition, LDA has also successfully been used in the downscaling of coarse-resolution soil moisture products,
for example, SMOS and SMAP, to generate mid- to high-resolution soil moisture products to improve their
usefulness in hydrological applications (Reichle, Entekhabi, & McLaughlin, 2001; Zupanski et al., 2011).
Downscaling contains two approaches. The first approach assimilates downscaled remote sensing observations or
retrievals (Dumedah et al., 2015; Sahoo et al., 2013), which is easy to implement in the DA process, and un-
certainties caused by the scaling issue can be considered. The second approach assimilates coarse-resolution
observations into the high-resolution output of land models. This approach avoids a priori observation parti-
tioning and performs downscaling within the EnKF algorithm (Sahoo et al., 2013). However, an assumption of a
certain spatial distribution may disturb the spatial coherence of the downscaled soil moisture. This shortcoming
might be overcome by machine learning techniques (F. Liu et al., 2020).

Overall, the soil moisture DA has witnessed good progress in terms of LDA methods and downscaling coarser-
resolution soil moisture products. In particular, the soil moisture DA method originated from a simple UKF to
utilize the advance LETKF to cut off the spurious correlation. This milestone progress provides a tracible in-
dicator for the future progress of soil moisture DA.

3.2. Snow-Related Variables

Snow cover is a fundamental component of both the radiation balance and the hydrological cycle of the Earth
system. Assimilation of snow-related variables from in situ or remote sensing observations has made great
progress in recent years. Variables such as snow cover fraction (SCF), snow cover area (SCA), snow depth (SD),
snow water equivalent (SWE), snow albedo, microwave brightness temperature (TB), and terrestrial water
storage (TWS) have been assimilated into land models or hydrological models using either simple methods, such
as direct insertion, or more sophisticated assimilation schemes based on Bayesian inference to improve the
estimation accuracy of land surface water cycle elements.

3.2.1. Evolution of Snow Data Assimilation Methods

The snow DA method has gradually advanced. Simple direct-insertion or optimized interpolation methods correct
the mismatches between the simulated snow state variables and snow observations according to physical rules
(Roy et al., 2010). The inherent hypothesis of insertion methods is that observations are perfect, while model
forecasts have biases, although the model prediction is sometimes more accurate than the observations in practical
applications (C. Sun et al., 2004). However, interpolation operations usually violate the water balance within the
physical process model (Magnusson et al., 2017). The drawbacks of the insertion DA method can be avoided by
using more advanced Bayesian filtering methods (Largeron et al., 2020), such as EKF (C. Sun et al., 2004) and
EnKF (Andreadis & Lettenmaier, 2006). The study of EnKF and insertion-based MODIS SCF assimilation
showed that the EnKF method slightly improves snow simulation with little violation of the mass balance
(Arsenault et al., 2013). Various variants of the EnKF, such as the ensemble square root filter (EnsRF) (Leisenring
& Moradkhani, 2011), deterministic ensemble Kalman filter (DEnKF) (T. Xu et al., 2014), hybrid DEnKF-
variational data assimilation method (DEnVar) (J. Xu & Shu, 2014) and ensemble adjustment Kalman filter
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(EAKF) (Zhao et al., 2016), have also been used in snow DA, and these methods show better efficiency and
performance than the EnKF with advantages such as not perturbing the observations. PF has been gaining
popularity in snow DA, for example, comparative studies of the EnKF, EnSRF and PF methods have suggested
that PF is superior to EnKF in improving the estimation accuracy of snow-related state variables, such as SD,
SWE, and streamflow (Leisenring & Moradkhani, 2011). Recently, smoother-based DA schemes, such as LETKF
(Oaida et al., 2019), the ensemble batch smoother (Margulis et al., 2015) and the particle batch smoother, which
synchronously assimilate both prior and subsequent observations in a given time, have become more appropriate
because they consider the seasonal temporal correlation between snow observations and state variables (Margulis
et al., 2015).

3.2.2. SCA/SCF Data Assimilation

From the perspective of data, an important branch of snow DA is SCA/SCF DA, owing to the satisfactory ac-
curacy and higher spatial resolution of various optical remote sensing snow cover products. A key issue in SCA/
SCF DA is to construct the nonlinear snow depletion curve (SDC), which relates the SCA to the model state (e.g.,
SD and SWE) as an observation operator. Various forms of SDCs have been proposed, and more consistent snow
predictions are obtained by effectively constraining the state variables of the model using SCA (Andreadis &
Lettenmaier, 2006; Niu & Yang, 2007; Zaitchik & Rodell, 2009). However, the existing SDCs still have diffi-
culties expressing the relationship between SCA and model state, such as the weak correlation between SCA and
model state caused by “saturation” and the lack of a consistent parameterized relationship in heterogeneous
terrain environments. Improving the representation of the relationship between SCA and the model state remains
a challenge.

3.2.3. SD/SWE Data Assimilation

Assimilation of in situ and/or passive microwave remote sensing-retrieved SD/SWE is another important branch
of snow DA, which has been shown to effectively increase the accuracy of snow water storage (i.e., SD, SWE,
streamflow) (Kumar et al., 2015; Y. Q. Liu et al., 2013; Magnusson et al., 2014). However, in situ SD/SWE
observations are usually sparse and do not match the model grid, and the SD/SWE retrieved by passive micro-
wave remote sensing is trapped by the coarse resolution and large uncertainty of various inversion algorithms. The
negative influence of erroneous SD/SWE retrievals can theoretically be avoided by directly assimilating radiance
observations, and several studies have witnessed dramatic improvements in model predictability via the assim-
ilation of microwave TBs (Che et al., 2014; Durand et al., 2009; Durand & Margulis, 2006; Huang et al., 2012).
Moreover, snow data assimilation has another trend in the simultaneous assimilation of multivariate observation
data, such as TB and in situ SD (Takala et al., 2011), SCF and snow albedo (J. Xu & Shu, 2014), SCF and SWE
(De Lannoy et al., 2012), and SCF and GRACE TWS (Su et al., 2010). These studies have suggested that joint
assimilation of combined multisource snow observations demonstrates a larger benefit by mitigating the limi-
tations of individual sensors.

Overall, snow DA presents many opportunities for improving our understanding of snow systems. The focus and
difficulties of future research lie in identifying the most informative sources of snow-related data and establishing
new frameworks for snow data assimilation based on dual driven theory-data approaches, revealing multi-scale
processes and identifying model deficiencies of snow physics, especially when ground observations of snow are
scarce in high-mountain areas.

3.3. Evapotranspiration

Evapotranspiration (ET) is a key component of surface water and energy exchanges between land and atmo-
sphere, and an accurate estimation of ET plays an important role in numerical weather prediction, drought and
irrigation monitoring. Current research on ET-related assimilation is mainly focused on assimilating state vari-
ables, such as soil moisture (SM) and land surface temperature (LST), to indirectly improve ET estimation (Y. Lu
et al., 2019; Xu et al., 2019), and only a few attempts have been made to assimilate satellite-based ET products
directly (Deb et al., 2022). The latter mainly focuses on assimilating satellite-based ET estimations into a hy-
drological model, such as VIC and SWAT, at the catchment scale using mature DA methods such as EnKF and
PF. The ET products are generally obtained by using the surface energy balance method, such as the Surface
Energy Balance Algorithm for Land (SEBAL) and Surface Energy Balance System (SEBS) (Table 1).
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A simple way to estimate ET is to update the model-simulated ET to the probabilistically optimal ET values by
directly assimilating satellite ET products using mature DA methods, such as EKF, EnKF, and PF (M. Pan
et al., 2008). The assimilation effect is limited to ET estimation instead of the whole model performance since ET
is not a state variable. Alternatively, satellite-based ET products are treated as observations to calibrate the model
parameters that are associated with other state (e.g., SM) or nonstate (e.g., streamflow) variables via the DA
approach, which may not guarantee optimization of the hydrological cycles as a whole (Gelsinari et al., 2020;
Xiong et al., 2019).

The bottleneck of assimilating ET is further resolved by establishing a relationship between ET and the state
variable SM, enabling feedback from assimilating ET to update the model state variable and subsequent fluxes
(e.g., sensible heat flux and streamflow) (Pipunic et al., 2008; Zou et al., 2017). One method is to construct an
observation operator relating SM with ET that converts ET into a state variable, and then, DA is implemented to
update the ET and SM (Pipunic et al., 2008). This method requires a long computational time and may cause a
rank-deficient problem in calculating the covariance matrix. The other approach is to build a unit matrix operator
to first update the modeled ET based on the DA method, and then, the state variable SM is calculated to adjust
other hydrological variables (e.g., streamflow) (Yin et al., 2016; Zou et al., 2017). Although this method resolves
the rank-deficient problem and is computationally effective, it demands an explicit time response relationship
between ET and SM to realize the feedback of assimilation to the model.

Although the assimilation of ET shows the potential to improve other hydrological variables, the assimilation
performance is largely affected by the quality of satellite-based ET products (Pipunic et al., 2008). In addition, it
remains a challenge to construct an appropriate DA framework that enables the feedback of ET DA to update the
model state variables and optimize the hydrologic cycles as a whole. Joint assimilation with the SM product may
improve the assimilation results.

3.4. Streamflow

Accurate and reliable streamflow predictions are fundamental for water resource management and flood pre-
vention measures, such as reducing flood impacts. Streamflow DA, which can improve the estimations of the
states and parameters of a watershed, plays an important role in the modeling and prediction of rainfall-runoff
processes.

Current research on streamflow DA is mainly focused on assimilating surface state variables, such as soil
moisture, to indirectly improve streamflow prediction (Visweshwaran et al., 2021). Most researchers use
streamflow to correct the initial conditions of watershed-scale hydrological models to improve streamflow
prediction. For example, streamflow DA is used to update the states and parameters of watershed-scale models
through the EKF, EnKF or PF (Aubert et al., 2003; Clark et al., 2008; Y. R. Fan et al., 2017; L. Sun et al., 2015;
Vrugt et al., 2006). Variants of EnKF, for example, EnsRF and recursive EnKF, are also used to assimilate
streamflow to update model states (H. Chen et al., 2013; McMillan et al., 2013). DA can also improve the initial
conditions for streamflow prediction (DeChant & Moradkhani, 2011, 2014). Localization and inflation tech-
niques can also be applied to improve the efficiency of streamflow DA (Gharamti et al., 2021). The variational
data assimilation method and KF are rarely used because hydrological processes are highly nonlinear (Ercolani &
Castelli, 2017; Mazrooei et al., 2021).

Flood inundation can be forecasted by assimilating water depth, discharge and flood extent maps. Traditionally,
gauge station-observed discharge and water stage data have been assimilated into hydrological models to predict
water depths and flood inundation (Cao et al., 2019; Jafarzadegan et al., 2021). Currently, an increasing number of
river flood-plain elevation and inundation maps, which are derived from satellite synthetic aperture radar (SAR)
images and altimetry data, have been assimilated into hydrological models to forecast flood inundation (Cooper
et al., 2019; Dasgupta et al., 2021; Dubey et al., 2021; Matgen et al., 2010). Apart from satellite and gauge
stations, observations can be derived from social media platforms; for example, water depth values gathered from
volunteered geographic information (VGI) can be assimilated into a 2D hydraulic model for real time flood
forecasting (Annis & Nardi, 2019). With real-time SAR-derived flood extents or stage observations, floods can be
forecasted in a timely manner based on DA (Hostache et al., 2018; X. Y. Xu et al., 2017).

Additionally, the simultaneous updating of multiple states and parameters has attracted increasing attention in
streamflow DA (Piazzi et al., 2021; Prakash & Mishra, 2022; F. Wang et al., 2022). However, spatiotemporal state
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updating in distributed hydrological models via streamflow DA remains a challenge due to the large dimensional
disparity between the model state space and observation space. One solution is to use spatiotemporal variance—
covariance from simulated climatology models as a surrogate for model error to spatially distribute constraints
from gauge measurements (S. Tian et al., 2022).

In situ discharge data are critical in real-time DA because the temporal resolution of discharge measurements is
superior, with hourly data versus the typically much longer revisit times of satellites. However, there have been
very few attempts to directly assimilate in situ streamflow observations. For example, streamflow observations
were assimilated to update upstream river water storage and improve downstream streamflow forecasting (S. F.
Liu et al., 2012; Seo et al., 2021; Y. Zhang et al., 2017). In these applications, the densities of observations
upstream dramatically affect the DA performance.

Assimilating remotely sensed observations of water levels and water-inundated areas is a promising direction. In
particular, the Surface Water and Ocean Topography (SWOT) satellite, which was launched in 2022, provides
high-resolution observations of the water body height and area and can be directly assimilated into hydrological
models to improve the accuracy of streamflow estimation globally (D. Y. Li et al., 2020; Wongchuig-Correa
et al., 2020). Additionally, another promising direction in streamflow DA is the combination of DA and ML
(as introduced in Section 2.6) (Boucher et al., 2020; Quilty et al., 2022).

3.5. Groundwater-Related Variables

Assimilating remote sensing or other observations into a groundwater model is important for improving esti-
mations of groundwater level (X. Li et al., 2020), subsurface storage variations (Khaki et al., 2018), and root zone
soil moisture (H. Zhang et al., 2018). For example, soil moisture products from SMOS and SMAP are assimilated
into land models to improve the estimation of groundwater (Tangdamrongsub et al., 2020). Soil moisture and
GRACE data are assimilated simultaneously to estimate both surface water and groundwater (D. Zhang
et al., 2016).

Methodologically, groundwater DA has special features, that is, the traditional EnKF cannot properly handle
strongly skewed pressure distributions, which are caused by extremely negative pressure heads in the unsaturated
zone during dry periods (Panzeri et al., 2014). A feasible solution is to simultaneously assimilate the soil moisture
and observed ground water head into coupled stochastic moment equations with the EnKF or ETKF using
localization (Panzeri et al., 2014; H. Zhang et al., 2018) as this process can effectively correct the skewness of the
negative pressure heads. However, solute transport, when coupled with groundwater flow, requires the hydraulic
conductivity and initial condition of solute sources to be simultaneously estimated (Tong et al., 2012). Therefore,
a DA scheme that simultaneously updates the parameter and state for improving solute transport prediction is
expected to be an effective solution.

3.6. Irrigation

To efficiently use and avoid unnecessary losses of fresh water to maintain sustainable development of agriculture
under a changing climate system, the estimation of irrigation water use and optimal irrigation management are
indispensable. Different from other hydrological state variables (e.g., soil moisture), irrigation can be regarded as
a “flux” variable that is seldom assimilated or estimated directly. LDA has shown satisfactory performance in the
estimation and management of irrigation by assimilating other variables (e.g., soil moisture) into land and hy-
drological models.

Given that irrigation is not a state variable in land and hydrological models, the general scheme involves
improving the estimation of soil moisture (Abolafia-Rosenzweig et al., 2019), ET (Irmak & Kamble, 2009), and
hydraulic parameters by assimilating remote sensing or in situ observations and then using the assimilated
variables and parameters in optimal irrigation management via agro-hydrological models (Irmak & Kam-
ble, 2009; L. Wang et al., 2009). This trend has evolved into using the above LDA scheme in real-time control of
irrigation (X. J. Han et al., 2016) and assimilation of high-resolution remote sensing (~30 m) data (F. N. Lei
et al., 2020) so that the assimilated information can be more useful in precision agriculture.

DA also has the potential to improve the estimation of irrigation magnitude. Synthetic experiments show that the
smoothing DA algorithms, for example, the particle batch smoother, outperform the DA approach that assimilates
a single point in a time window, thus improving the daily to seasonal irrigation magnitude by assimilating remote
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sensing soil moisture data (Abolafia-Rosenzweig et al., 2019). The combination of GRACE assimilation and
irrigation process simulation in the Noah-MP model has demonstrated its effectiveness in improving the esti-
mation of anthropogenic water withdrawals and irrigation over the USA High Plains Aquifer (Nie et al., 2019).
However, DA for irrigation magnitude at a large scale has not been used for practical applications. The estimation
of irrigation water use at continental, regional, and river basin scales is a promising research direction.

3.7. Land Surface Temperature

LST is a key state variable that determines the upward longwave radiation and influences the turbulent sensible
and latent heat fluxes to the atmosphere as well as the ground heat flux into the soil column. Therefore, LST DA
has attracted much research interest because assimilating LST can improve the estimation of soil temperature
profiles and/or surface heat fluxes. The variational DA approach and ensemble-based filters are most often
adopted to assimilate the LST into either the simple surface energy balance (SEB) equation or complex land
surface models (LSMs), whereby the MODIS LST products are most widely used (Table 1).

One major development path entails a variational DA approach for assimilating LST using a simple SEB equation
(e.g., force-restore equation or heat diffusion equation) or complex LSMs as the physical constraint. Numerous
studies have assimilated LST measurements into the simple force-restore equation based on the variational DA
framework for estimating surface heat fluxes (Sini et al., 2008). This approach has been further advanced by using
the full heat diffusion equation as a constraint (Bateni & Entekhabi, 2012; T. Xu et al., 2014, 2019). A more
sophisticated approach involves the use of LSM, such as the Common Land Model and ORCHIDEE LSM, as a
physical constraint, in which the adjoint of the LSM needs to be developed (Benavides Pinjosovsky et al., 2017;
X. L. He et al., 2020; Meng et al., 2009).

The other path for assimilating LST is based on ensemble-based filters, such as EnKF and EnKS. In one simple
process, LST is assimilated into the SEB model with the heat diffusion equation using the EnKF or EnKS method
to overcome the shortcomings of the variational DA approach (X. L. He et al., 2019). In comparison to the
variational DA method, the ensemble-based algorithm has the following advantages: (a) it is easy to implement
and does not need an adjoint model, and (b) it can provide both model estimates and their uncertainties.
Accordingly, a more sophisticated approach has been developed to assimilate LST into complex LSMs
considering the inherent coupling between water and energy using the EnKF or EnKS method for point- and
regional-scale applications (Huang, Li, & Lu, 2008; Reichle et al., 2010). Simultaneous optimization of state
variables (i.e., LST and SM) and model parameters that affect the surface heat fluxes can be determined based on
the EnKF or EnKS method.

Although LST assimilation improves the estimation of the soil temperature profile and surface heat fluxes, two
limitations have been demonstrated: (a) this process performs poorly under dense vegetation or wet soil condi-
tions, and (b) the satellite-derived LST products are often contaminated by clouds that reduce data availability. A
promising direction is the joint assimilation of LST and SM or brightness temperature measurements, which can
overcome the above deficiencies (Y. Lu et al., 2017, 2019).

3.8. Multivariable Data Assimilation

Multivariable LDA refers to the simultaneous assimilation of at least two types of observations to update model
state variables or parameters. The availability of simultaneous multisource observation pairs (even if these
observation pairs are not captured at the same moment, it is critical that they are captured within a certain time
window) is an important characteristic of multivariable LDA (Montzka et al., 2012). With the development of
comprehensive space-air-ground Earth observation systems, multisource and multiscale Earth observation data
are becoming increasingly abundant and have formed complementary advantages in temporal and spatial
resolution.

However, the potential value of these massive observation data and their combinations has not been fully
exploited in LDA compared to univariate LDA. To date, a large number of multivariable LDA schemes have been
designed to consistently correct terrestrial system states and parameters by jointly assimilating multiple types of
data, for example, joint assimilation of TB and ET (M. Pan et al., 2008), TB, LST and LAI (W. J. Chen
et al.,, 2021), SM and LAI (Sabater et al., 2008), SM and ET (Gavahi et al., 2020), SM and LST (Huang
et al., 2016), and SM and streamflow (Abbaszadeh et al., 2020), into LSM to improve water, energy and flux
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estimates (Barrett & Renzullo, 2009; W. J. Chen et al., 2021). SM, pressure head, and streamflow have been
assimilated into hydrological models to improve subsurface states and river discharge estimates (Botto
et al., 2018; D. Zhang et al., 2016). SM measurements from the SMOS and SMAP and TWS information from
GRACE have been assimilated into LSM to improve regional SM and groundwater storage estimates (Tang-
damrongsub et al., 2020). Joint assimilation of streamflow and actual ET observations has been performed to
estimate the time-varying parameters of a hydrological model (Xiong et al., 2019). The combined assimilation of
several snow-related variables (e.g., SCF, SD, SWE, LST, albedo, snow grain size, and snow density) has been
conducted to improve snow cover modeling accuracy (Charrois et al., 2016; De Lannoy et al., 2012; Durand &
Margulis, 2008; Piazzi et al., 2018). The most straightforward technique used in multivariable LDA is the
augmented state-vector approach, which is commonly applied with EnKF and its variants, and PF.

Land surface process simulations could benefit from multivariate DA with respect to univariate DA. However, the
performance of LDA results does not parallel improvements with the number of observed data types (Charrois
et al., 2016). Undesirable worsening of the system performance has been observed for the combined assimilation
of multiple variables, such as integrating additional observations with large uncertainties into hydrological
models (Y. Zhang et al., 2017). Although multivariate LDA seems to be a relatively straightforward extension of
univariate LDA, the complexity of multivariate LDA does not lie in an algorithmic nature but is mainly related to
the following aspects: (a) it is difficult to assess which types of observation data are the most effective, and it is
also increasingly difficult to determine the possible tradeoffs that might occur (Botto et al., 2018). Thus, spec-
ifying appropriate uncertainties for different types of measurement data is a major challenge for multivariable
LDA. (b) Multivariable LDA often suggests a multiscale problem. How to coordinate the temporal and spatial
scale discrepancies between different types of observations, as well as scale discrepancies between observations
and model simulations, is also a major challenge. (c) Another incidental fact in multivariate DA is that the
spurious correlation across different types of variables is typically more pronounced (Popov & Sandu, 2019; D.
Zhang et al., 2016). Although some localization techniques alleviate spurious correlations, further efforts are
needed to properly assign the degree of localization for each type of observation variable and account for the
correlation changes spatiotemporally.

4. Development of Global, Regional, and Catchment-Scale Land Data Assimilation
Systems

4.1. Global and Regional-Scale Land Data Assimilation Systems

The land data assimilation system (LDAS) is a system that exploits the methodological advances introduced in
Section 2 to assimilate multisource observations into land models, providing optimized estimations of land
surface states and fluxes. LDAS can be used in forecasting, nowcasting or reanalysis. Currently, most LDASs
focus on producing long-term data sets, which manifest as the development of various global- and regional-scale
LDASs mainly using the Fortran programming language (Baatz et al., 2021; Xia et al., 2019), including the North
American LDAS (NLDAS) (Mitchell et al., 2004; Xia et al., 2012), Global LDAS (GLDAS) (Rodell et al., 2004),
and European LDAS (ELDAS) (C. M. J. Jacobs et al., 2008; Van Den Hurk, 2002), as well as LDASs developed
for Asia (LDAS developed by China Meteorological Administration (CMA)) (C. Shi et al., 2011), China (Chinese
LDAS (CLDAS)) (X. Li et al., 2007), Canada (Coupled Land and Atmosphere Data Assimilation System
(CaLDAS)) (Carrera et al., 2015), South America (SALDAS) (de Goncalves et al., 2006), South Korea (KLDAS)
(Lim et al., 2012), and Africa (McNally et al., 2017). These LDASs are typically run offline (i.e., they are not
coupled with an atmospheric model) using the best-available meteorological forcing and are different from
reanalysis systems, such as ERAS, which are produced by weakly coupled land—atmosphere DA systems
(Hersbach et al., 2020). Notably, most of the abovementioned LDASs only assimilate limited observations of land
surface variables or just perform multimodel ensemble simulations. The basic information on global and regional-
scale LDASs is summarized in Table 2; here, we introduce some representative LDASs.

4.1.1. NLDAS

The NLDAS is a multi-institution effort dedicated to providing high-quality, spatially and temporally consistent
land surface data sets (Mitchell et al., 2004; Xia et al., 2012). Currently, NLDAS has been upgraded from the first
phase (NLDAS-1) to the second phase (NLDAS-2), which runs hourly from January 1979 with a spatial reso-
lution of 1/8th-degree for North America. NLDAS-2 produces a high-quality meteorological forcing data set from
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Figure 6. Framework of the Chinese land data assimilation system (CLDAS).

multisource ground- and satellite-based products/analysis and reanalysis data (Table 2). There are currently four
LSMs, that is, Noah 2.8, Mosaic, VIC 4.0.3, and Sacramento Soil Moisture Accounting model, implemented by
the NLDAS-2 to generate hourly model outputs. The NLDAS-2 project does not include the assimilation of
satellite-based observations of land surface variables; however, efforts have been made to assimilate remote
sensing retrievals into NLDAS-2 (Kumar et al., 2012, 2016).

4.1.2. GLDAS

The GLDAS led by NASA/GSFC also aims to use satellite- and ground-based observations with advanced LSMs
and DA methods to produce optimal estimates of land surface states and fluxes worldwide (Rodell et al., 2004).
Two meteorological forcing data sets are adopted by GLDAS: one forcing is produced by the combination of
satellite- and ground-based products and reanalysis data available from 1979, and the other forcing is the Global
Meteorological Forcing Data set produced by Princeton University available from 1948 to 2010 (Table 2). The
two forcing data sets are used to drive four LSMs, that is, Noah, Mosaic, VIC and CLM2, to generate 3-hourly and
monthly model outputs at spatial resolutions of 0.25° (Noah only) and 1° (all other LSMs). MODIS snow cover
has been assimilated into GLDAS to constrain the estimation of snow water equivalent, and assimilation of other
variables has also been implemented as part of a follow-up project (Peters-Lidard et al., 2011).

4.1.3. CLDAS

The CLDAS aims to produce high-resolution, spatiotemporally consistent land surface data sets for mainland
China by assimilating various remote sensing observations (Figure 6) (Huang et al., 2016; X. Li et al., 2007). The
CoLM (Dai et al., 2003) is used to simulate land surface processes, the EnKF algorithm is implemented as a DA
method, and the radiative transfer models (RTM) of snow, vegetation, and thawed and frozen soils are used as
observation operators. The data assimilated into CLDAS are mainly remote sensing observations of land surface
variables, that is, passive microwave remote sensing data, including SSM/I, TMI and AMSR-E brightness
temperature (TB) products, and optical remote sensing data, such as MODIS LST, LAI and SCA products. Inputs
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Figure 7. Conceptual scheme of catchment-scale LDAS.

include the China Meteorological Forcing Data set (CMFD) (J. He et al., 2020) and parameter sets for CoLM,
such as soil texture derived from the Soil Database of China (Shangguan et al., 2012) and land cover taken from
the Multisource Integrated Chinese Land Cover (MICLC) data set (Ran et al., 2012).

The long-term data sets of meteorological forcing, surface water and energy fluxes/variables produced by the
abovementioned global and regional-scale LDASs have been widely adopted in various hydrological and
meteorological applications (Xia et al., 2019). For instance, the GLDAS data set has been implemented to es-
timate groundwater depletion in India (Rodell et al., 2009), produce the ESA CCI soil moisture product (Dorigo
et al.,, 2017), and quantify the global water cycle (Rodell et al., 2015) and freshwater availability (Rodell
et al., 2018). The NLDAS data set has been widely used in drought (Xia et al., 2014) and flood (Alipour
et al., 2020; David et al., 2013) monitoring, crop and water resource management (Dhungel et al., 2020), and
numerical weather forecasting and climate prediction (Case et al., 2011; Saha et al., 2014) at the continental scale.
Overall, the long-term data sets generated by those LDASs have greatly advanced our understanding of the
global/regional-scale water cycle and energy budgets, especially in ungauged regions, which has provided
substantial support to research scientists, operational forecasters, and decision makers.

4.2. Catchment-Scale Land Data Assimilation Systems

The catchment is a basic unit of land surface system and water resource management. A catchment (or river basin
or watershed) encompasses more prominent complexity and heterogeneity due to many processes, including
three-dimensional groundwater dynamics, which are not considered in global-scale models and must be presented
in the catchment-scale model. Therefore, there is a strong need to extend the applicability of LDA from global and
regional scales to the catchment scale (Figure 7), with a focus on improving the predictability of the hydrological
cycle to support water resource management (Troch & Paniconi, 2003).
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The most remarkable characteristic of catchment-scale LDA, which differs from large-scale LDA, is that a
distributed hydrological model coupled with a groundwater model can be used, which can further integrate other
important processes, such as dynamic vegetation growth models and socioeconomic models. Therefore,
catchment-scale LDA may involve three-dimensional dynamics, which are rare in regional- and global-scale
LDA. Additionally, the computational cost of catchment-scale LDA is generally higher, and the computation-
ally tractable DA framework is also critical. Most importantly, high resolution (usually meters to tens of kilo-
meters horizontally, 0.01~1 m vertically) is a main advantage of catchment-scale LDA and has substantial
practical value. For instance, (F. N. Lei et al., 2020) assimilated high-resolution thermal and radar remote sensing
retrievals for soil moisture monitoring in a drip-irrigated vineyard.

To date, most catchment-scale LDAs have been conducted one dimensionally, either using one- or three-
dimensional models. The focus of catchment-scale LDA has been on using simple conceptual models (Aubert
et al., 2003; H. Chen et al., 2013; Pathiraja et al., 2016) and distributed hydrological models (Clark et al., 2008;
Kim et al., 2021; Pauwels et al., 2001; C. Qin et al., 2008; Xie & Zhang, 2010) to assimilate surface soil moisture,
streamflow, and snow data individually or jointly. A good example of catchment-scale LDA is the Soil & Water
Assessment Tool (SWAT)-based hydrological DA system (SWAT-HDAS), which was developed to assimilate in
situ or remotely sensed multisource observations, including SM, SWE and discharge, into a parallelized SWAT
model for basin-scale hydrological predictions (Y. Zhang et al., 2017). In addition, three-dimensional models, for
example, the process-based numerical model of coupled surface and subsurface flow (Hurkmans et al., 2006), and
more complex distributed hydrological models, including lateral flows and surface water—groundwater in-
teractions, for example, MIKE SHE (Boegh et al., 2004; Ridler et al., 2014; D. Zhang et al., 2016), have been used
to assess the performance of DA algorithms. Combined streamflow and pressure head assimilations within the
framework of the three-dimensional Richards equation are only used for test cases and not for real-world three-
dimensional catchment data assimilations (Camporese et al., 2009). The parallel data assimilation framework
(PDAF)-based catchment-scale LDAS, which fully couples the Consortium for Small-scale Modeling (COSMO)
atmospheric model, the CLM, and a subsurface model (ParFlow), is a real three-dimensional catchment-scale
LDAS (Kurtz et al., 2016; H. Zhang et al., 2018). This system offers the possibility to perform state and joint
state—parameter estimations at the surface—subsurface part of the land system. Notably, catchment-scale LDAS
that realizes three-dimensional data assimilation remains rare.

Advanced DA frameworks capable of assimilating multiscale observations and describing multiscale spatial
heterogeneity should be developed in catchment-scale LDA. Multisource remote sensing observations, including
SM, SD/SWE, SCA, ET, LAI, streamflow and surface freeze—thaw state, and some new types of data, for
example, wireless sensor network data and COSMOS data, can be assimilated into integrated watershed models to
generate high-resolution and consistent estimations of the main components of the terrestrial water cycle at the
catchment scale (Farhadi et al., 2015; Gichamo & Tarboton, 2019; X.J. Han et al., 2014; C. Qin et al., 2008; Xie &
Zhang, 2010; D. Zhang et al., 2016; Y. Zhang et al., 2017). Additionally, land processes can be assessed by
catchment-scale LDAS. E. Han et al. (2012a) investigated how surface soil moisture data assimilation affects
hydrologic simulations and how spatially varying inputs affect the potential capability of surface soil moisture
assimilation at the watershed scale.

Methodologically, some advanced assimilation algorithms have been used for catchment-scale LDA, such as the
integrated EnKF and PF, which can be developed to adapt nonlinear and non-Gaussian systems for catchment-
scale hydrological data assimilation (Y. R. Fan et al., 2017). The evolutionary DA method was introduced to
evolve ensembles of model states and parameter sets while adaptively estimating the model error for real-time
forecasting operations (Dumedah & Coulibaly, 2013a). The recursive EnKF method has been developed to
assimilate streamflow data in an operational flow forecasting system (McMillan et al., 2013). The nonstationary
characteristics of the parameters were also considered, and the time-varying model structures have certain po-
tential to reduce systematic error and improve the hydrological predictions with changing land surface conditions
(Pathiraja, Moradkhani, et al., 2018; Pathiraja et al., 2016, 2018a, 2018b). The high-dimensional DA method can
improve the performance of catchment-scale LDA. For instance, a three-dimensional EnKF has been used to
assimilate AMSR-E coarse grid (25 km) soil moisture retrievals into the Noah land surface model for fine-scale
(1 km) surface soil moisture estimation over the Little River Experimental Watershed, Georgia, USA (Sahoo
et al., 2013). Some rescaling techniques, for example, linear regression and cumulative distribution function
matching, were beneficial for removing the systematic deviations of catchment-scale LDA (Alvarez-Garreton
etal., 2014; Loizu et al., 2018). The spatial patterns of observations can provide more useful information to update
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horizontal variables (e.g., lateral flow, streamflow) for catchment-scale LDA (Grayson et al., 2002; Pauwels
et al., 2001). Multiscale DA has been an essential tool to assimilate various satellite-based and ground-based
observations at the watershed scale (Montzka et al., 2012). In addition, high-performance computational tech-
nologies, such as PDAF and OpenDA (open data assimilation library) (Ridler et al., 2014), have been used to
address the heavy computational requirements of catchment-scale LDA (Ridler et al., 2014; Y. Zhang et al., 2017,
H. Zhang et al., 2018).

High spatiotemporal resolution land products are usually produced by catchment-scale LDAS and have been
applied to drought and flood monitoring (Kim et al., 2021) and groundwater and agricultural irrigation water
management (Kurtz et al., 2017), effectively improving the catchment-scale hydrological forecasting ability and
water resource management level. For example, a GRACE terrestrial water storage product is assimilated into
NASA's catchment land surface model (CLSM) at the global scale, generating groundwater storage time series that
are useful for drought monitoring (B. L. Li et al., 2019). Agricultural water resources are properly managed before
drought events are expended through soil moisture DA to detect and attribute drought-induced changes in hy-
drological behaviors at the catchment scale (Y. H. Liu et al., 2021). Flood extent representation is improved by
assimilating synthetic aperture radar (SAR) images into hydrodynamic models with Telemac2D-EnKF (Nguyen
et al., 2022). The opportunities presented by catchment-scale LDAS create an area of research with significant
potential to inform decision-making processes related to water management and climate change adaptation.

5. Software and High-Performance Computing

A typical trend of DA software is providing flexible and “plug and play” tools for multidisciplinary applications
for land surfaces. Data Assimilation Research Testbed (DART) (J. Anderson et al., 2009) is the first open-source
DA tool and has been widely used in a large range of fields, including atmosphere, thermosphere and ionosphere,
as well as land and hydrology studies. OpenDA is a more flexible framework that provides the open interface
standard and model library for DA development. Both DART and OpenDA have been used in LDA experiments,
such as snowpack estimates (Y.-F.Zhang et al., 2014) or system development (Poterjoy, 2016). The land in-
formation system (LIS) was designed specifically for LDA by integrating numerous land surface models and
satellite and ground-based observations (Kumar et al., 2006). Applications based on the LIS include GLDAS
(Rodell et al., 2004), the Famine Early Warning Systems Network Land Data Assimilation System (FLDAS)
(McNally et al., 2017), and the National Climate Assessment LDAS (Kumar et al., 2019).

DA software was customized for multidisciplinary LDA applications. Most of them utilize specific land surface
models. For example, Daspy (Han et al., 2015) and SWAT-HDAS (Y. Zhang et al., 2017) were designed for the
Community Land Model (CLM) and SWAT, respectively. TerrSysMP-PDAF (Kurtz et al., 2016) provides the
DA framework for the land surface—subsurface-atmosphere. ComDA (F. Liu et al., 2020) integrates various
assimilation algorithms, multiple land models, and observation operators for multidisciplinary DA research. The
most popular language among them is Fortran, while OpenDA, Daspy, and ComDA are written in Java, python,
and C++, respectively. Other software integrate uncertainty analysis, parameter estimation, and sensitivity
analysis toolkits for land models (UQ-PyL) (W. Wang et al., 2016) to address the problem that land models are
highly nonlinear and sensitive to parameters.

High-performance computing is increasingly appealing to LDA to address the enormous amount of computing
time and ensembles needed. Many software programs, such as Daspy, LIS, ComDA, and SWAT-HDAS, support
parallel computing. The PDAF (Nerger & Hiller, 2013) specifically highlights its parallel performance. These
software's parallel strategy is usually algorithm-based, such as parallel EnKF (Houtekamer et al., 2014) and
LETKF. These software have supported the development of high-performance LDA frameworks, including
GLDAS and TerrSysMP-PDAF (Kurtz et al., 2016). With the advent of GPU computing, the Compute Unified
Device Architecture (CUDA) was introduced (De Luca et al., 2021) for LDA. An experiment (Quinn & Abar-
banel, 2011) shows that a parallel speedup factor of approximately 300 has been achieved when using GPU
computing. In the big Earth data era, data assimilation is needed to integrate ultrahigh-resolution numerical
models and observations (Miyoshi et al., 2016) and enable the implementation of many ensemble members (more
than 10 thousand, Miyoshi et al., 2014). High-performance computing is urgently needed to reduce the
computational cost in these big data assimilation systems. Currently, the challenges of high-performance
computing for LDA include the redesign of parallel computation schemes, construction of parallel architecture
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Figure 8. The challenges of LDA in forcing data, reanalysis, operational application, coupled land—atmosphere DA, and
critical zone DA.

supercomputer systems, new software infrastructure focusing on flexible workflows (Bauer et al., 2021), and
cloud computing with a more scalable and adaptable architecture for LDAS.

The future directions of LDA software include developing the scalability of the algorithms to integrate data-
driven approaches and designing a better strategy to assimilate nontraditional scientific big data sets, such as
those from social media. Additionally, by offering user-friendly interfaces, visualization and analysis tools, LDA
software will be more accessible to the community.

6. Challenges and Opportunities
6.1. Challenges

LDA faces grand challenges, including increasing the reliability and resolution of near-surface atmospheric
forcing, developing long time series land reanalysis by truly assimilating numerous land observations, using LDA
in operational applications, developing coupled land-atmospheric DA systems, and expanding LDA from the land
surface to the subsurface, that is, the critical zone (Figure 8).

6.1.1. High-Quality Forcing for Land Data Assimilation Systems

Forcing is one of the most important components in LDAS that greatly impacts the ability of land models to
produce reliable and robust predictions (Cosgrove et al., 2003). However, generating high-quality and high-
resolution forcing remains challenging due to deficiencies in quality control, bias correction, and spatiotem-
poral downscaling. Most existing forcing data, particularly precipitation and solar radiation, have a spatial res-
olution of 25 km or are even coarser (Rodell et al., 2004; Sheffield et al., 2006), hindering their applications at
regional and catchment scales. Furthermore, quality control and bias correction require systematic refinement; for
instance, the GLDAS forcing has serious discontinuities and larger errors in precipitation and temperature and
failed to capture the spatiotemporal variability in some regions (F. Yang et al., 2017). Similarly, the NLDAS
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retrospective forcing (1996-2002) was reported to have large biases in precipitation and solar radiation forcings
(Luo et al., 2003; Xia et al., 2019). Thus, a potential direction of future research should emphasize the devel-
opment of long time series, high spatiotemporal resolution, and high-quality forcing data (X. L. He et al., 2020). In
particular, the development of high-quality forcing data for complex terrain and areas with extremely sparse
observations is the main challenge (Jiang et al., 2022).

6.1.2. New Land Reanalysis Based on the Land Data Assimilation System

Atmospheric reanalysis is available globally, however, land surface reanalysis is lagging behind. Currently, either
the so-called land surface reanalysis, for example, ERA-interim/Land (Balsamo et al., 2015), ERA5-Land
(Muiioz-Sabater et al., 2021), and MERRA-2 land (Reichle et al., 2017), or outputs from most of the LDASs
(see Section 4), have not widely used advanced DA methods or operationally assimilated massive volumes of
observational data. Therefore, the development of new land reanalysis by truly assimilating numerous land ob-
servations remains challenging.

The difficulties in producing new land reanalysis mainly originate from the following factors: the bias in the
LDAS and the lack of long-term high-quality land observations to validate the LADS. The propagation of biased
information, for example, errors associated with land models and observation data, through LDAS may lead to
problems in closing the water and energy budgets that cause geophysical inconsistencies in land reanalysis (Lahoz
& Menard, 2010). Land reanalysis is also highly sensitive to the land observations used to validate the LDAS,
while currently, the quality control and consistency checks of land observations are not as adequate as those of
atmospheric observations. Taking one of the most widely used land surface variables, for example, soil moisture,
as an example, the International Soil Moisture Network (Dorigo et al., 2021) has effectively improved the scarcity
of in situ observations. However, its quality control level still lags behind that of atmospheric observations,
mainly because the data come from different organizations, observation instruments, and observation depths. The
error correction methods are different among different organizations and even in different observation areas
within a single organization. There is no unified standard specification. In addition, remote sensing products
derived from various platforms also present some unique challenges, requiring cross intercalibration, reproc-
essing and bias correction (Bosilovich et al., 2013). The changing technical specifications of observation systems
lead to difficulties in accurately quantifying the uncertainty characteristics of satellite data to be assimilated
(Baatz et al., 2021).

6.1.3. Land Data Assimilation for Operational Use

One purpose of LDAS is to support hydrological and ecological operational applications and management. It is
now possible to operationally use the DA technique in decision making and environmental management (Doherty
& Moore, 2020), flood prediction and mitigation (Emerton et al., 2016), drought monitoring and prediction
(Sawada & Koike, 2016), and operational irrigation scheduling (D. Z. Li et al., 2018).

The challenges in operational use are to enhance the stability and reliability of LDA and improve the predictions
of extreme events, such as floods and droughts. Extreme events rarely occur and seldom repeat in both real-world
and physical models (Trenberth et al., 2015). Therefore, a large ensemble is needed to capture extreme events,
however, its application in operational LDA is hampered by the vast computation. Additionally, the observations
of extreme events are sporadic, characterized by skewness and heteroscedasticity in their probabilistic distri-
bution. However, quality control, bias correction, and error quantification of observational data have not been
performed operationally in LDA, hindering the operational application of LDA in flood and drought prediction
(Y. Liu et al., 2012).

6.1.4. Coupled Land-Atmospheric Data Assimilation

The development of strongly coupled land—atmosphere DA systems is still at the early stage due to challenges in
handling the mismatch of spatial-temporal scales between land and atmospheric processes and computational
limitations. There are ongoing efforts to couple the LDAS with the atmospheric DA system to improve its coupled
land—atmosphere forecast skills (C. Draper & Reichle, 2019; Shahabadi et al., 2019). Efforts have mainly been
focused on optimizing the initial soil moisture state by assimilating the observations of air temperature and
relative humidity at the 2-m height or/and satellite observations of surface soil moisture. Rather, a coupled land
and atmosphere data assimilation system developed by Rasmy et al. (2012) directly assimilates both low- and
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high-frequency passive microwave brightness temperatures to improve representations of initial land surface and
atmospheric conditions, which is more feasible for near real-time applications. Recently, de Rosnay et al. (2022)
summarized the coupled DA activities at the European Centre for Medium-Range Weather Forecasts (ECMWF)
and presented developments in land—atmosphere forward operator coupling that show the potential for coupled
radiative transfer modeling at low-frequency passive microwaves. In the above cases, the LDAS is generally
weakly coupled into the atmospheric DA system, in which the land and atmospheric assimilations are performed
independently, and their relative influences are added back to the coupled model system in the subsequent forecast
cycle. P. Shi et al. (2022) demonstrated the contributions of weakly coupled DA in improving the interannual
predictability of summer climate over Europe. Weakly coupled land—atmosphere DA systems have been
implemented operationally at some NWP centers (Shahabadi et al., 2019) to produce reanalysis data, such as
ERAS (Hersbach et al., 2020); however, the assimilation of observations in one system (e.g., land DA systems)
cannot directly influence the analysis of the other system (e.g., atmospheric DA systems). Although the imple-
mentation of strongly coupled land—atmosphere DA systems can address the above deficiencies, it is a relatively
new area of research that presents significant challenges, such as more costly computation and difficulty in
integrating land and atmospheric processes at different spatial-temporal scales (S. Penny & Hamill, 2017; Sha-
habadi et al., 2019).

6.1.5. Critical Zone Data Assimilation

The critical zone is composed of rock, soil, water, air, living organisms and their interactions in the permeable
near-surface area of the Earth (Bogena et al., 2018). The anthropogenic, climatic and tectonic interconnections
from the land surface to the subsurface are inherent in critical zones, and therefore, a full understanding of critical
zones requires the integration of multiple disciplines, including hydrology, geophysics, ecology, biogeochem-
istry, and geochemistry.

Critical zone DA remains challenging because (a) coupled critical zone models considering surface—subsurface
multiscale processes, especially those coupled with reactive transport and isotopic fractionation, are rarely
available (Li et al., 2022). (b) In addition to horizontal heterogeneity, vertical heterogeneity introduces more
complex error propagation for multivariable state updates. (c) Assimilation of new observations, including iso-
topes, ground penetrating radar data, P-band SAR, 3D microelectrical resistivity tomography (Vanella
et al., 2016), sensor networks (Bogena et al., 2018), and the Internet of Things, requires the development of new
observation operators that are suitable for critical zone observatories.

6.2. Opportunities

The flourishing of various types of data, including remote sensing, sensor networks, the Internet of Things, and
social sensing, provide new opportunities for LDA. Additionally, LDA theory may become more generalized and
unified by means of advanced methodologies, such as stochastic calculus and data-driven approaches, particularly
deep learning, deep reinforcement learning, causal inference, and other big data analytics (X. Li et al., 2023). With
these advanced techniques, LDA applications can be extended from natural systems to coupled natural and human
systems (CNHS).

6.2.1. Deluge of Data

Traditionally, Earth system observations are scarce, especially in remote regions where monitoring devices are
sparsely distributed or nonexistent. However, this situation has dramatically changed due to the rapid progress in
sensing techniques, information and communication technology, especially wireless sensor networks and the
Internet of Things (Hart & Martinez, 2015). Additionally, new-generation of remote sensing satellites overper-
form their predecessors with unprecedented capacity in observing terrestrial systems. For example, CubeSat
simultaneously improves the spatial and temporal resolution by scanning the Earth daily with hundreds of small
satellites (Poghosyan & Golkar, 2017), which overcomes the largest challenges in traditional satellite remote
sensing of high spatial resolution and lower temporal resolution, providing global daily meter-order images. For
airborne platforms, the introduction of unmanned aerial vehicles (UAVs) expands the applicability of assimilating
high-resolution remote sensing data at local and catchment scales.

Therefore, we are witnessing an unprecedented opportunity for ubiquitous sensing in Earth system. These
remarkable changes require new data analytics and artificial intelligence to extract useful information for LDA.
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They also require a substantial change in the LDA approach that can address new challenges resulting from the
data deluge.

6.2.2. Assimilation of Social Data

LDA is evolving beyond pure geophysical systems to encompass CNHS (Carrassi et al., 2018). Thus, LDA should
consider the assimilation of social sensing data (X. P. Liu et al., 2017) into CNHS models, particularly agent-
based models (Ward et al., 2016). This process is methodologically difficult because conventional assimilation
methodology is appropriate only for quantifiable and structured natural system observational data but not for
categorical variables or unstructured/soft data (e.g., natural language) in the human system. Therefore, extending
DA approaches to meet the new requirements of assimilating categorical and nonstructural data in CNHS is a new
research direction. Bayesian inference, capable of handling categorical distributions, provides new opportunities
to overcome the challenge of assimilating discrete categorical variables. For example, conjugate prior features of
the Dirichlet distribution are used to assimilate categorical data of land use into the cellular automata model to
update multiple discrete state variables (Hu et al., 2022). Additionally, advancements in the combination of data
assimilation and agent-based models have paved the way for assimilating big data from social media, social
surveys, and surveillance cameras (Ward et al., 2016). Overall, although in its infancy, the assimilation of social
data provides new insights to increase the understanding of the human component of the Earth system in the
Anthropocene.

6.2.3. Maturation of LDA Theory and Methods

The development of a more mature theory and methods for LDA has borrowed from theoretical and methodo-
logical advancements from stochastic differential equations and ergodic theory, which are mathematical foun-
dations of Bayesian filters, including PFs and EnKF. The maturation of LDA theory necessitates the
establishment of the spatial scale as the independent variable, better representation of the multiscale heteroge-
neities, and characterization of the scale-dependent representativeness errors. The formulation of scale repre-
sentation and scale transformations in DA (Janji¢ et al., 2018) by means of stochastic calculus (F. Liu & Li, 2017)
and ergodic theory have provided solid opportunities to form a more mature theory and methodology in LDA.

6.2.4. Deep Integration With Big Data Analytics

In the era of big data, one of the most promising directions for LDA is harmonizing transformative theory with the
exponentially growing observation data of land surface processes. Moreover, the symbiotic integration of
advanced big data analytics, such as deep reinforcement learning, casual inference, and surrogate modeling, has
propelled the fast and accurate simulation of land surface processes. In addition, DA facilitates the learning of new
processes and relationships in the data. For example, the latent data assimilation (Cheng et al., 2022), combined
with encoder-decoder networks that map high-dimensional neural state variables to low-dimensional dynamical
state variables, can identify state variables from high-dimensional observational data, without prior knowledge of
the underlying physics (B. Chen et al., 2022; C. Chen et al., 2022). With these technological advancements, LDA
can serve as an engine of digital twin of Earth.

7. Summary

LDA integrates land models and land surface observations to produce state variables, parameters, and fluxes of
the Earth system that are as accurate as possible while considering the uncertainties of both land models and
observations. During past decades, LDA has undergone rapid development in theories, methods and applications
and is widely accepted in the land surface research community. This review provides a synthesis of LDA ad-
vances, covering the full spectrum of LDA, including distinctive features in its theoretical and methodological
developments, typical applications in terrestrial water and energy cycles, and developments of global- and
catchment-scale LDASs and software platforms. We also point out the grand challenges and opportunities for
future LDA studies.

LDA has developed its unique characteristics because land surface processes are highly nonlinear, and states,
fluxes and parameters are scale dependent and spatially correlated. In addition, observations are typically non-
Gaussian, and meteorological forcings are more important than the initial field of model states. These charac-
teristics of land surface research demand new theoretical and methodological developments in LDA, such as the
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implementation of nonlinear and non-Gaussian DA approaches, accurate quantification and reduction in model
and observation uncertainties, simultaneous estimation of model state and parameters, consideration of multiscale
spatial correlation, and integration of ML and LDA.

Landmark studies assimilating the major states and fluxes in land surface processes, including soil moisture,
snow, LST, evapotranspiration, groundwater and streamflow, are extracted from the volume of related works.
Special attention is given to multivariable LDA since multisource and multiscale Earth observations are becoming
increasingly abundant. The popularity of LDA can be partially attributed to the iconic developments and ap-
plications of various LDASs for different scales (i.e., global, regional, and catchment scales) and several common
LDA software platforms for customized research in various fields, which are also introduced in detail.

In regard to the existing challenges and potential development trends for LDA, we conclude that the critical
challenges focus on improving the physical understanding of land surface processes, including the development
of high-quality meteorological forcing and new land reanalysis data, implementation of LDA for operational use,
and interdisciplinary explorations of advancing coupled land—atmosphere DA and critical zone DA. The op-
portunities for LDA focus on advancing its theory and methodology, including addressing the data deluge in both
Earth observation systems and social sensing, deep integrations with advanced big data analytics, and
strengthening from stochastic calculus and ergodic theory. LDA is developing toward maturation.

As LDA theoretical foundations and its applications continue to mature, LDA not only advances the “scientific”
understanding of land surface processes but also serves as an “engineering tool” in Earth system science. The
former aspect underscores the role of LDA in enhancing the predictability and observability of high-dimensional
nonlinear phenomena in land surface process research. By synergistically combining theory and data, LDA
employs geophysical theories to express the resolved scientific insights, and uses observational data to substitute
for unresolved processes. Pioneering studies have been conducted, for example, the combination of global
optimization and DA to analyze the time series of the state and output innovations, enabling the accurate
description of the nondriven slow part of the hydrograph and improvement of model structure (Vrugt et al., 2005).
However, the assimilation of soil moisture did not improve the prediction of evapotranspiration of European
forests (Strebel et al., 2023), indicating that this is mostly likely due to inappropriate description of evapo-
transpiration fluxes, and highlighting the need of improving model description of soil hydrological processes in
land surface models. Therefore, further LDA investigations remain urgent needed to find more “scientific” ev-
idence in practice. On the other hand, as an engineering tool, LDA has become a primary instrument for fore-
casting and reanalysis in land surface processes. It has bolstered the development of operational forecasting
systems for various applications, such as NWP and hydrological forecasting. Moreover, LDA, being a part of the
Earth system data assimilation toolbox, aids in engineering digital twins of Earth. Overall, this review, through
synthesis of the current knowledge of LDA, could provide a steppingstone for its future development, particularly
in the era of big data and artificial intelligence.

Glossary

AMSR-E advanced microwave scanning radiometer for Earth observation system
CaLDAS coupled land and atmosphere data assimilation system

CCI climate change initiative

CLDAS Chinese land data assimilation system

CLM community land model

CMA China Meteorological Administration

CMFD China meteorological forcing data set

CoLM common land model

ComDA a common land data assimilation platform

COSMOS cosmic-ray soil moisture observing system

CubeSat a class of miniaturized satellites based around a form factor consisting of 10 cm cubes
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DA data assimilation
DART data assimilation research testbed
ECMWF European Centre for Medium-range Weather Forecasts
EKF extended Kalman filter
ELDAS European land data assimilation system
En4DVar ensemble four-dimensional variational data assimilation
EnKF ensemble Kalman filter
EnKS ensemble Kalman smoother
EnSRF ensemble square root filter
ERAS ECMWEF reanalysis version5
ESA European Space Agency
ET evapotranspiration
ETKF ensemble transform Kalman filter
GLDAS global land data assimilation system
GRACE gravity recovery and climate experiment
HiWATER Heihe watershed allied telemetry experimental research
JULES joint UK land environment simulator
KF Kalman filter
KLDAS South Korea land data assimilation system
LAI leaf area index
LDA land data assimilation
LDAS land data assimilation system
LETKF local ensemble transform Kalman filter
LIS land information system
LSM land surface model
LST land surface temperature
MCMC Markov Chain Monte Carlo
MICLC multisource integrated Chinese land cover
ML machine learning
MKS multiscale Kalman smoother
MODIS moderate resolution imaging spectroradiometer
NAFE Australian National Airborne Field Experiment
NLDAS North American land data assimilation system
NLS-En4DVar nonlinear least square En4DVar
OpenDA open data assimilation library
PDAF parallel data assimilation framework
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PF particle filter
REnKF recursive EnKF
RTM radiative transfer models
SALDAS South American land data assimilation
SCA SNOW cover area
SCF snow cover fraction
SD snow depth
SDC snow depletion curve
SM soil moisture
SMAP soil moisture active passive satellite
SMAPEx soil moisture active passive experiment
SMOS soil moisture and ocean salinity satellite
SSM/1 special sensor microwave/imager
SWAT soil & water assessment tool
SWAT-HDAS SWAT-based hydrological data assimilation system
SWE snow water equivalent
TB brightness temperature
T™MI tropical rainfall measuring mission's microwave imager
TWS terrestrial water storage
VIC variable infiltration capacity model
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